Zobrazeno 1 - 10
of 40
pro vyhledávání: '"Ricotta, Guillaume"'
Autor:
Ricotta, Guillaume
Corentin Perret-Gentil proved, under some very general conditions, that short sums of $\ell$-adic trace functions over finite fields of varying center converges in law to a Gaussian random variable or vector. The main inputs are P.~Deligne's equidist
Externí odkaz:
http://arxiv.org/abs/1907.01834
G. Ricotta and E. Royer (2018) have recently proved that the polygonal paths joining the partial sums of the normalized classical Kloosterman sums $S(a,b;p^n)/p^(n/2) converge in law in the Banach space of complex-valued continuous function on [0,1]
Externí odkaz:
http://arxiv.org/abs/1810.01150
Autor:
Ricotta, Guillaume, Royer, Emmanuel
Emmanuel Kowalski and William Sawin proved, using a deep independence result of Kloosterman sheaves, that the polygonal paths joining the partial sums of the normalized classical Kloosterman sums S(a,b0;p)/p^{1/2} converge in the sense of finite dist
Externí odkaz:
http://arxiv.org/abs/1609.03694
Autor:
Ricotta, Guillaume
Cette thèse établit des formules asymptotiques robustes pour le second moment harmonique ramolli des fonctions $L$ de Rankin-Selberg. La principale contribution est une amélioration substancielle de la longueur admissible du ramollisseur qui est r
Externí odkaz:
http://tel.archives-ouvertes.fr/tel-00006428
http://tel.archives-ouvertes.fr/docs/00/04/69/37/PDF/tel-00006428.pdf
http://tel.archives-ouvertes.fr/docs/00/04/69/37/PDF/tel-00006428.pdf
This article contains all of the technical ingredients required to implement an effective, explicit and unconditional amplifier in the context of GL(3) automorphic forms. In particular, several coset decomposition computations in the GL(3) Hecke alge
Externí odkaz:
http://arxiv.org/abs/1412.5022
Autor:
Kowalski, Emmanuel, Ricotta, Guillaume
We show that the multiple divisor functions of integers in invertible residue classes modulo a prime number, as well as the Fourier coefficients of GL(N) Maass cusp forms for all N larger than 2, satisfy a central limit theorem in a suitable range, g
Externí odkaz:
http://arxiv.org/abs/1310.5223
Fix a Hecke cusp form $f$, and consider the $L$-function of $f$ twisted by a primitive Dirichlet character. As we range over all primitive characters of a large modulus $q$, what is the average behavior of the square of the central value of this $L$-
Externí odkaz:
http://arxiv.org/abs/0812.2606
Autor:
Ricotta, Guillaume, Templier, Nicolas
The leading order term for the average, over quadratic discriminants satisfying the so-called Heegner condition, of the Neron-Tate height of Heegner points on a rational elliptic curve E has been determined in [12]. In addition, the second order term
Externí odkaz:
http://arxiv.org/abs/0807.2930
Autor:
Ricotta, Guillaume, Royer, Emmanuel
In a previous paper, the authors determined, among other things, the main terms for the one-level densities for low-lying zeros of symmetric power L-functions in the level aspect. In this paper, the lower order terms of these one-level densities are
Externí odkaz:
http://arxiv.org/abs/0806.2908
This paper establishes new bridges between number theory and modern harmonic analysis, namely between the class of complex functions, which contains zeta functions of arithmetic schemes and closed with respect to product and quotient, and the class o
Externí odkaz:
http://arxiv.org/abs/0803.2821