Zobrazeno 1 - 10
of 40
pro vyhledávání: '"Ricka, Nicolas"'
Conjugation spaces are equipped with an involution such that the fixed points have the same mod 2 cohomology (as a graded vector space, a ring, and even an unstable algebra) but with all degrees divided by 2, generalizing the classical examples of co
Externí odkaz:
http://arxiv.org/abs/1908.03088
We construct a topological model for cellular, 2-complete, stable C-motivic homotopy theory that uses no algebro-geometric foundations. We compute the Steenrod algebra in this context, and we construct a "motivic modular forms" spectrum over C.
Externí odkaz:
http://arxiv.org/abs/1810.11050
Autor:
Ricka, Nicolas
In this paper, we produce a cellular motivic spectrum of motivic modular forms over $\R$ and $\C$, answering positively to a conjecture of Dan Isaksen. This spectrum is constructed to have the appropriate cohomology, as a module over the relevant mot
Externí odkaz:
http://arxiv.org/abs/1704.04547
Autor:
Bhattacharya, Prasit, Ricka, Nicolas
Using a form of descent in the stable category of $\mathcal{A}(2)$-modules, we show that there are no exotic elements in the stable Picard group of $\mathcal{A}(2)$, \textit{i.e.} that the stable Picard group of $\mathcal{A}(2)$ is free on $2$ genera
Externí odkaz:
http://arxiv.org/abs/1702.01493
Autor:
Ricka, Nicolas
L'objectif de ce travail est l'étude de la K-théorie réelle connexe des 2-groupes abéliens élémentaires, c'est-à-dire, pour V un 2-groupe abélien élémentaire, l'objet kR^{\star}(BV ). Cet objet contient, entre autres, la K-théorie orthogon
Externí odkaz:
http://tel.archives-ouvertes.fr/tel-00953049
http://tel.archives-ouvertes.fr/docs/00/95/30/49/PDF/PhD_thesis_RICKA_.pdf
http://tel.archives-ouvertes.fr/docs/00/95/30/49/PDF/PhD_thesis_RICKA_.pdf
Autor:
Ricka, Nicolas
We investigate the particular properties of the stable category of modules over a finite dimensional cocommutative graded connected Hopf algebra $A$, via tensor-triangulated geometry. This study requires some mild conditions on the Hopf algebra $A$ u
Externí odkaz:
http://arxiv.org/abs/1610.03561
We show that the Picard group $Pic(A(1))$ of the stable category of modules over $\mathbb{C}$-motivic $A(1)$ is isomorphic to $\mathbb{Z}^4$. By comparison, the Picard group of classical $A(1)$ is $\mathbb{Z}^2 \oplus \mathbb{Z}/2$. One extra copy of
Externí odkaz:
http://arxiv.org/abs/1606.05191
Autor:
Ricka, Nicolas
Let $A$ be a cocommutative finite dimensional Hopf algebra over the field with two elements, satisfying some mild hypothesis. We set up a descent spectral sequence which computes the Picard group of the stable category of modules over $A$. The starti
Externí odkaz:
http://arxiv.org/abs/1601.03098
Autor:
Ricka, Nicolas1 (AUTHOR) nicolas@myndblue.ai, Pellegrin, Gauthier1 (AUTHOR), Fompeyrine, Denis A.1 (AUTHOR), Lahutte, Bertrand2 (AUTHOR), Geoffroy, Pierre A.3,4,5,6 (AUTHOR)
Publikováno v:
Scientific Reports. 4/25/2023, Vol. 13 Issue 1, p1-13. 13p.
Autor:
Ricka, Nicolas
We show that the $\mathbb{Z}/2$-equivariant Morava K-theories with reality (as defined by Hu) are self-dual with respect to equivariant Anderson duality. In particular, there is a universal coefficients exact sequence in Morava K-theory with reality.
Externí odkaz:
http://arxiv.org/abs/1408.1581