Zobrazeno 1 - 10
of 71
pro vyhledávání: '"Richard Zach"'
Autor:
LANDON D. C. ELKIND, RICHARD ZACH
Publikováno v:
The Review of Symbolic Logic. :1-38
The use of the symbol $\mathbin {\boldsymbol {\vee }}$ for disjunction in formal logic is ubiquitous. Where did it come from? The paper details the evolution of the symbol $\mathbin {\boldsymbol {\vee }}$ in its historical and logical context. Some s
Autor:
Richard Zach
Publikováno v:
The Review of Symbolic Logic. 14:645-686
Any set of truth-functional connectives has sequent calculus rules that can be generated systematically from the truth tables of the connectives. Such a sequent calculus gives rise to a multi-conclusion natural deduction system and to a version of Pa
Publikováno v:
An Introduction to Proof Theory ISBN: 0192895931
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::e2c7c5c33b328d59869bc6d11ae627fb
https://doi.org/10.1093/oso/9780192895936.005.0007
https://doi.org/10.1093/oso/9780192895936.005.0007
Publikováno v:
An Introduction to Proof Theory ISBN: 0192895931
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::1ca987cb493eb0a625dca3bc2a7209ef
https://doi.org/10.1093/oso/9780192895936.005.0001
https://doi.org/10.1093/oso/9780192895936.005.0001
Publikováno v:
An Introduction to Proof Theory ISBN: 0192895931
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::edd59fcfc189fdae443d8d9271a4f2eb
https://doi.org/10.1093/oso/9780192895936.005.0003
https://doi.org/10.1093/oso/9780192895936.005.0003
Publikováno v:
An Introduction to Proof Theory ISBN: 0192895931
An Introduction to Proof Theory
An Introduction to Proof Theory
In order to prove that the simplification process for arithmetic eventually reaches a simple proof, it is necessary to measure the complexity of proofs in a more sophisticated way than for the cut-elimination theorem. There, a pair of numbers suffice
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::a2df0b945d7a00dc1b203ba6200c8d98
https://doi.org/10.1093/oso/9780192895936.003.0008
https://doi.org/10.1093/oso/9780192895936.003.0008
Publikováno v:
An Introduction to Proof Theory ISBN: 0192895931
Proof theory arose as a mathematical solution to a problem in the philosophy of mathematics. In the first third of the twentieth century, debates raged among philosophers and mathematicians about the safety of mathematical reasoning. David Hilbert pr
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::226caa4ee4989a470d313b6336c70431
https://doi.org/10.1093/oso/9780192895936.003.0001
https://doi.org/10.1093/oso/9780192895936.003.0001
Publikováno v:
An Introduction to Proof Theory ISBN: 0192895931
The first results in proof theory were obtained using axiomatic systems of logical deduction. The chapter develops propositional and predicate logic in such an axiomatic system. It shows how reasoning under assumption can be regained in an axiomatic
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::4fad4bc25307c038d8dd5509242b0eda
https://doi.org/10.1093/oso/9780192895936.003.0002
https://doi.org/10.1093/oso/9780192895936.003.0002
Publikováno v:
An Introduction to Proof Theory ISBN: 0192895931
By assigning ordinal notations to proofs in classical arithmetic it is possible to show that each step in the simplification process making up the consistency proof, the complexity of proofs, as measured by the associated ordinal notation, successive
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::6182afed0dc607aab44e650b6124fe6a
https://doi.org/10.1093/oso/9780192895936.003.0009
https://doi.org/10.1093/oso/9780192895936.003.0009
Publikováno v:
An Introduction to Proof Theory ISBN: 0192895931
Natural deduction is a philosophically as well as pedagogically important logical proof system. This chapter introduces Gerhard Gentzen’s original system of natural deduction for minimal, intuitionistic, and classical predicate logic. Natural deduc
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::0d3b81655c66254277ddf5ff881ee2ed
https://doi.org/10.1093/oso/9780192895936.003.0003
https://doi.org/10.1093/oso/9780192895936.003.0003