Zobrazeno 1 - 10
of 39
pro vyhledávání: '"Richard K Kiang"'
Autor:
Radina P Soebiyanto, Diane Gross, Pernille Jorgensen, Silke Buda, Michal Bromberg, Zalman Kaufman, Katarina Prosenc, Maja Socan, Tomás Vega Alonso, Marc-Alain Widdowson, Richard K Kiang
Publikováno v:
PLoS ONE, Vol 10, Iss 8, p e0134701 (2015)
BackgroundStudies in the literature have indicated that the timing of seasonal influenza epidemic varies across latitude, suggesting the involvement of meteorological and environmental conditions in the transmission of influenza. In this study, we in
Externí odkaz:
https://doaj.org/article/1fb805e6241c4151bfb0fb56dc5cd7c4
Autor:
Radina P Soebiyanto, Wilfrido Clara, Jorge Jara, Leticia Castillo, Oscar Rene Sorto, Sidia Marinero, María E Barnett de Antinori, John P McCracken, Marc-Alain Widdowson, Eduardo Azziz-Baumgartner, Richard K Kiang
Publikováno v:
PLoS ONE, Vol 9, Iss 6, p e100659 (2014)
BackgroundThe role of meteorological factors on influenza transmission in the tropics is less defined than in the temperate regions. We assessed the association between influenza activity and temperature, specific humidity and rainfall in 6 study are
Externí odkaz:
https://doaj.org/article/b8ea66d1465f4be9a4632236c5f295be
Publikováno v:
PLoS ONE, Vol 5, Iss 3, p e9450 (2010)
Influenza transmission is often associated with climatic factors. As the epidemic pattern varies geographically, the roles of climatic factors may not be unique. Previous in vivo studies revealed the direct effect of winter-like humidity on air-borne
Externí odkaz:
https://doaj.org/article/70a547b7a12b450392b6ff7f7c203b7c
Autor:
Radina P. Soebiyanto, Richard K. Kiang
Publikováno v:
Geospatial Technology for Human Well-Being and Health ISBN: 9783030713768
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::575f01c18f64aa4d0917f1701a83caa4
https://doi.org/10.1007/978-3-030-71377-5_7
https://doi.org/10.1007/978-3-030-71377-5_7
Publikováno v:
ISPRS International Journal of Geo-Information, Vol 3, Iss 4, Pp 1372-1386 (2014)
The NASA Giovanni data analysis system has been recognized as a useful tool to access and analyze many different types of remote sensing data. The variety of environmental data types has allowed the use of Giovanni for different application areas, su
Autor:
Richard K. Kiang, Radina P. Soebiyanto
Publikováno v:
Geocarto International. 29:39-47
Seasonal influenza causes 5 million severe illnesses and 500,000 deaths annually worldwide. Among the factors that have been linked to influenza transmission are meteorological parameters, especially temperature and humidity. Low temperature and humi
Autor:
Ben Althouse, Ashlynn R. Daughton, Alessandro Vespignani, Esteban Abeyta, Lauren Castro, Kirsten J. Taylor-McCabe, Nicholas Generous, Sara Y. Del Valle, Carmen M. Pancerella, Laura L. Pullum, Kristen Margevicius, Alina Deshpande, Andrew P. Morse, Aaron E. Scott, Arvind Ramanathan, Richard K. Kiang, Geoffrey Fairchild, Howard Burkom, James M. Hyman, Jeffrey Schlegelmilch
Publikováno v:
PLOS ONE
PLoS ONE
PLoS ONE, Vol 11, Iss 1, p e0146600 (2016)
PLoS ONE
PLoS ONE, Vol 11, Iss 1, p e0146600 (2016)
Epidemiological modeling for infectious disease is important for disease management and its routine implementation needs to be facilitated through better description of models in an operational context. A standardized model characterization process t
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::2ac9cafe6775f23eef01ef32ec080697
Autor:
Jenny Lara, Mariel Lopez Moya, Richard K. Kiang, Angel Balmaseda, Eduardo Azziz-Baumgartner, Radina P. Soebiyanto, Jorge Jara, Marc-Alain Widdowson, Wilfrido Clara, Rakhee Palekar
Publikováno v:
Geospatial Health, Vol 10, Iss 2 (2015)
Seasonal influenza affects a considerable proportion of the global population each year. We assessed the association between subnational influenza activity and temperature, specific humidity and rainfall in three Central America countries, i.e. Costa
Publikováno v:
Telematics and Informatics. 10:209-222
Several energy functions for synthesizing neural networks are tested on 2-D synthetic data and on Landsat-4 Thematic Mapper data. These new energy functions, designed specifically for minimizing misclassification error, in some cases yield significan
Publikováno v:
Biosurveillance
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::3e51594f92da2594a7f3b0c953ebb731
https://doi.org/10.1201/b10315-4
https://doi.org/10.1201/b10315-4