Zobrazeno 1 - 5
of 5
pro vyhledávání: '"Richard Erwin Hasenauer"'
Autor:
Richard Erwin Hasenauer
Publikováno v:
Czechoslovak Mathematical Journal. 71:891-900
We explore the connection between atomicity in Prufer domains and their corresponding class groups. We observe that a class group of infinite order is necessary for non-Noetherian almost Dedekind and Prufer domains of finite character to be atomic. W
If every subring of an integral domain is atomic, then we say that the latter is hereditarily atomic. In this paper, we study hereditarily atomic domains. First, we characterize when certain direct limits of Dedekind domains are Dedekind domains in t
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::8c73d0e9625ce8cfa82c9fe5340c225c
http://arxiv.org/abs/2112.00264
http://arxiv.org/abs/2112.00264
Autor:
Richard Erwin Hasenauer, Bethany Kubik
Publikováno v:
Tamkang Journal of Mathematics. 52
Given a ring $R$, an ideal $I$ of $R$, and an element $a\in I$, we say $a=\lambda b_1\cdots b_k$ is a $\tau_I$-factorization of $a$ if $\lambda$ is any unit and $b_1\equiv\cdots\equiv b_k\pmod{I}$. In this paper, we investigate the $\tau_I$-atomicity
Publikováno v:
Glasgow Mathematical Journal. 60:401-409
We construct a norm on the nonzero elements of a Prüfer domain and extend this concept to the set of ideals of a Prüfer domain. These norms are used to study factorization properties Prüfer of domains.
Autor:
Richard Erwin Hasenauer
Publikováno v:
J. Commut. Algebra 8, no. 1 (2016), 61-75
In this paper, we will introduce a new norm map on almost Dedekind domains. We compare and contrast our new norm map to the traditional Dedekind-Hasse norm. We prove that factoring in an almost Dedekind domain is in one-to-one correspondence to facto