Zobrazeno 1 - 10
of 110
pro vyhledávání: '"Richard Arens"'
Autor:
Harro Heuser, R. E. Fullerton, C. C. Braunschweiger, Ebbe Thue Poulsen, Jean Leray, Gregers Krabbe, Anastasios Mallios, Tosio Kato, Felix E. Browder, Takako Kōmura, Yukio Kōmura, Helmut H. Schaefer, Kosaku Yosida, Nelson Dunford, Joseph Nieto, W. A. J. Luxemburg, A. C. Zaanen, J. L. B. Cooper, R. S. Bucy, G. Maltese, Jean Dieudonné, H. G. Garnir, Heinz König, Angus E. Taylor, Max Landsberg, Thomas Riedrich, E. Michael, A. Martineau, J. L. Kelley, Vlastimil Pták, Shozo Koshi, Horst Leptin, H. Reiter, L. Waelbroeck, N. Aronszajn, P. Szeptycki, Richard Arens, Czeslaw Bessaga, Victor Klee, Hidegoro Nakano, Joseph Wloka, Ky Fan, Hubert Berens, P. L. Butzer, H. O. Cordes, Stefan Hildebrandt, Gerhard Neubauer, J. B. Diaz, F. T. Metcalf, Günter Ewald, M. A. Naǐmark, Elmar Thoma, Bernhard Gramsch
Autor:
V. S. Varadarajan, Richard Arens
Publikováno v:
Journal of Mathematical Physics. 41:638-651
In this paper the notion of an EPR state for the composite S of two quantum systems S1, S2, relative to S2 and a set O of bounded observables of S2, is introduced in the spirit of classical examples of Einstein-Podolsky-Rosen and Bohm. We restrict ou
Publikováno v:
Mathematical Inequalities & Applications. :31-40
A seminorm S on an algebra A is called stable if for some constant σ > 0 , S(x^k) ≤ σS(x)^k for all x ∈ A and all k = 1, 2, 3,.... We call S strongly stable if the above holds with σ = 1 . In this note we use several known and new results to s
Publikováno v:
Linear and Multilinear Algebra. 41:9-18
A norm N on an associative algebra A shall be called Jordan-multiplicative of order k (or simplyJ(K)), if Sk being the symmetric group on k elements. It easily follows that if N is J(k) then it is k-bounded, and that J(2) implies strong stability. Ou
Autor:
Moshe Goldberg, Richard Arens
Publikováno v:
Linear and Multilinear Algebra. 40:229-234
Let W =(Wij ) be a fixed m × n weight matrix, and let the W-weighied l1 , norm on Cm×n be defined by Given weight matrices U,V,W, of orders m × r r × n and m × n, respectively, we begin by proving that a constant μ > 0 satisfies In the second p
Autor:
Richard Arens, Moshe Goldberg
Publikováno v:
Linear Algebra and its Applications. 201:155-163
Let W = ( w ij ) be a fixed n × n matrix of positive entries, and consider the W -weighted l ∞ norm defined on C n×n by ‖A‖w, ∞ = max| i, j | w ij α ij |, A =( α ij ).The main purpose of this note is to prove that for this norm, multiplic
Autor:
Richard Arens
Publikováno v:
Pacific Journal of Mathematics. 162:247-259
Autor:
Moshe Goldberg, Richard Arens
Publikováno v:
Linear Algebra and its Applications. 181:269-278
We call a seminorm S on an algebraAquadrative if there is a positive λ such that S(a2)⩽λS(a)2 for all a in A. If S is quadrative, we ask what polynomial operations onAare continuous in the topology defined by S. We show that when a polynomial lie
Autor:
Richard Arens
Publikováno v:
Pacific Journal of Mathematics. 154:1-15
Autor:
Moshe Goldberg, Richard Arens
Publikováno v:
Journal of Mathematical Analysis and Applications. 162:592-609
Let A be a function algebra on a set T. In this paper we study seminorms on A of the form Sc(x)=‖cx‖ where c, 0 ≠ c ∈ A , is a fixed element and ‖·‖ is the sup norm on T. We begin by proving that under suitable assumptions, elements c, d