Zobrazeno 1 - 10
of 12
pro vyhledávání: '"Rich R. Kerswell"'
Publikováno v:
Journal of Advances in Modeling Earth Systems, Vol 16, Iss 6, Pp n/a-n/a (2024)
Abstract We present a novel probabilistic deep learning approach, the “stochastic latent transformer” (SLT), designed for the efficient reduced‐order modeling of stochastic partial differential equations. Stochastically driven flow models are p
Externí odkaz:
https://doaj.org/article/f0ea9b7447804d8ea6e7802ab4515820
The concept of statistical stability is central to Malkus's 1956 attempt to predict the mean profile in shear flow turbulence. Here we discuss how his original attempt to assess this - an Orr-Sommerfeld analysis on the mean profile - can be improved
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::015ae825973ccc053546b72071b2ae67
https://www.repository.cam.ac.uk/handle/1810/352790
https://www.repository.cam.ac.uk/handle/1810/352790
Publikováno v:
Buza, G, Page, J & Kerswell, R R 2022, ' Weakly nonlinear analysis of the viscoelastic instability in channel flow for finite and vanishing Reynolds numbers ', Journal of Fluid Mechanics, vol. 940, A11 . https://doi.org/10.1017/jfm.2022.222
The recently discovered centre-mode instability of rectilinear viscoelastic shear flow (Garget al.,Phys. Rev. Lett., vol. 121, 2018, 024502) has offered an explanation for the origin of elasto-inertial turbulence that occurs at lower Weissenberg numb
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::27a38ad9b0b54b5d8fa7f223a2c40078
https://hdl.handle.net/20.500.11820/398e2802-b7d2-4a8a-b1eb-171ee9bf5e61
https://hdl.handle.net/20.500.11820/398e2802-b7d2-4a8a-b1eb-171ee9bf5e61
Publikováno v:
Philosophical transactions. Series A, Mathematical, physical, and engineering sciences. 380(2225)
Recent direct numerical simulations (DNS) and computations of exact steady solutions suggest that the heat transport in Rayleigh–Bénard convection (RBC) exhibits the classical1/3scaling as the Rayleigh numberRa→∞with Prandtl number unity, cons
Publikováno v:
Journal of Fluid Mechanics. 936
Bileaflet mechanical heart valves (BMHV) create unphysiological turbulent flow. Such turbulent flow involves multiple instability mechanisms interacting with one another in a confined geometry. For instance, an impinging leading-edge vortex (ILEV) in
Autor:
Jacob Page, Rich R. Kerswell
Publikováno v:
Page, J & Kerswell, R R 2020, ' Searching turbulence for periodic orbits with dynamic mode decomposition ', Journal of Fluid Mechanics, vol. 886, A28 . https://doi.org/10.1017/jfm.2019.1074
We present a new method for generating robust guesses for unstable periodic orbits (UPOs) by post-processing turbulent data using dynamic mode decomposition (DMD). The approach relies on the identification of near-neutral, repeated harmonics in the D
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::dc0016868f98204f1f15b0e006a682a6
http://arxiv.org/abs/1906.01310
http://arxiv.org/abs/1906.01310
Autor:
Jacob Page, Rich R. Kerswell
Publikováno v:
Page, J & Kerswell, R R 2019, ' Koopman mode expansions between simple invariant solutions ', Journal of Fluid Mechanics, vol. 879, pp. 1-27 . https://doi.org/10.1017/jfm.2019.686
A Koopman decomposition is a powerful method of analysis for fluid flows leading to an apparently linear description of nonlinear dynamics in which the flow is expressed as a superposition of fixed spatial structures with exponential time dependence.
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::2355aabd3d22cb7ee02808dda65ae6f8
https://www.repository.cam.ac.uk/handle/1810/296152
https://www.repository.cam.ac.uk/handle/1810/296152
Autor:
Rich R. Kerswell, Jacob Page
Publikováno v:
Page, J & Kerswell, R R 2019, ' Koopman analysis of Burgers equation ', Physical Review Fluids, vol. 3, no. 7, 071901(R) . https://doi.org/10.1103/PhysRevFluids.3.071901
Page, J & Kerswell, R 2018, ' Koopman analysis of Burgers equation ', Physical Review Fluids, vol. 7, no. 3, 071901(R) . https://doi.org/10.1103/PhysRevFluids.3.071901
Page, J & Kerswell, R 2018, ' Koopman analysis of Burgers equation ', Physical Review Fluids, vol. 7, no. 3, 071901(R) . https://doi.org/10.1103/PhysRevFluids.3.071901
The emergence of Dynamic Mode Decomposition (DMD) as a practical way to attempt a Koopman mode decomposition of a nonlinear PDE presents exciting prospects for identifying invariant sets and slowly decaying transient structures buried in the PDE dyna
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::4f0983705bdad30b453c3e8d3dda7378
https://www.repository.cam.ac.uk/handle/1810/284476
https://www.repository.cam.ac.uk/handle/1810/284476
Autor:
Chris C.T. Pringle, Rich R. Kerswell
Publikováno v:
Philosophical Transactions of the Royal Society A: Mathematical, Physical & Engineering Sciences; Feb2009, Vol. 367 Issue 1888, p457-472, 16p
Autor:
ASHLEY P. WILLIS, RICH R. KERSWELL
Publikováno v:
Journal of Fluid Mechanics; Jan2009, Vol. 619 Issue 1, p213-233, 21p