Zobrazeno 1 - 10
of 47
pro vyhledávání: '"Rice disease detection"'
Publikováno v:
Plant Methods, Vol 20, Iss 1, Pp 1-14 (2024)
Abstract This study explores the application of Artificial Intelligence (AI), specifically Convolutional Neural Networks (CNNs), for detecting rice plant diseases using ARM Cortex-M microprocessors. Given the significant role of rice as a staple food
Externí odkaz:
https://doaj.org/article/372dac8e263b43b1bcd6339e4cc7c2cd
Advancements in rice disease detection through convolutional neural networks: A comprehensive review
Autor:
Burak Gülmez
Publikováno v:
Heliyon, Vol 10, Iss 12, Pp e33328- (2024)
This review paper addresses the critical need for advanced rice disease detection methods by integrating artificial intelligence, specifically convolutional neural networks (CNNs). Rice, being a staple food for a large part of the global population,
Externí odkaz:
https://doaj.org/article/ff934da82b444103857a942bfa814c4d
Publikováno v:
Smart Agricultural Technology, Vol 4, Iss , Pp 100195- (2023)
The earliest detection of plant disease is the primary concern of the farming community. The availability of advanced digital cameras and smartphones with improved image acquisition modes and deep learning methods like convolutional neural networks (
Externí odkaz:
https://doaj.org/article/d0f66333733f49cb8ec1571d8049c289
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Jiaqi Li, Xinyan Zhao, Hening Xu, Liman Zhang, Boyu Xie, Jin Yan, Longchuang Zhang, Dongchen Fan, Lin Li
Publikováno v:
Plants, Vol 12, Iss 18, p 3273 (2023)
With the evolution of modern agriculture and precision farming, the efficient and accurate detection of crop diseases has emerged as a pivotal research focus. In this study, an interpretative high-precision rice disease detection method, integrating
Externí odkaz:
https://doaj.org/article/56890fc697fd442d85a87714abda6e53
Publikováno v:
Plants, Vol 12, Iss 11, p 2225 (2023)
Rice is a crucial food crop, but it is frequently affected by diseases during its growth process. Some of the most common diseases include rice blast, flax leaf spot, and bacterial blight. These diseases are widespread, highly infectious, and cause s
Externí odkaz:
https://doaj.org/article/795f300e1667413685aa0ccfba51e19e
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
Frontiers in Plant Science, Vol 12 (2021)
Various rice diseases threaten the growth of rice. It is of great importance to achieve the rapid and accurate detection of rice diseases for precise disease prevention and control. Hyperspectral imaging (HSI) was performed to detect rice leaf diseas
Externí odkaz:
https://doaj.org/article/426372c2368741589c696aab9ed557c6
Publikováno v:
IEEE Access, Vol 7, Pp 143190-143206 (2019)
In this paper, a method for detecting rapid rice disease based on FCM-KM and Faster R-CNN fusion is proposed to address various problems with the rice disease images, such as noise, blurred image edge, large background interference and low detection
Externí odkaz:
https://doaj.org/article/aadd03e6bb12416895b5217abc5694d0
Publikováno v:
Plants; Volume 12; Issue 11; Pages: 2225
Rice is a crucial food crop, but it is frequently affected by diseases during its growth process. Some of the most common diseases include rice blast, flax leaf spot, and bacterial blight. These diseases are widespread, highly infectious, and cause s