Zobrazeno 1 - 10
of 145
pro vyhledávání: '"Riccardo Rasconi"'
Autor:
Gabriele Sartor, Davide Zollo, Marta Cialdea Mayer, Angelo Oddi, Riccardo Rasconi, Vieri Giuliano Santucci
Publikováno v:
AIxIA 2021 – Advances in Artificial Intelligence ISBN: 9783031084201
In this work we present an empirical study where we demonstrate the possibility of developing an artificial agent that is capable to autonomously explore an experimental scenario. During the exploration, the agent is able to discover and learn intere
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::0e53ee975ee3afadf7d54124efa14c6d
http://arxiv.org/abs/2206.01815
http://arxiv.org/abs/2206.01815
Publikováno v:
Applied Soft Computing. :110456
Autor:
Angelo Oddi, Riccardo Rasconi
Publikováno v:
Fundamenta Informaticae. 174:259-281
In this work we investigate the performance of greedy randomised search (GRS) techniques to the problem of compiling quantum circuits to emerging quantum hardware. Quantum computing (QC) represents the next big step towards power consumption minimisa
Publikováno v:
Bio-inspired Systems and Applications: from Robotics to Ambient Intelligence ISBN: 9783031065262
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::82bd287b408dcef7ad1f6d9424423ec2
https://doi.org/10.1007/978-3-031-06527-9_9
https://doi.org/10.1007/978-3-031-06527-9_9
Publikováno v:
Scopus
This research has been supported by the Spanish Government under project PID2019-106263RB-I00 . ISTC-CNR authors were supported by the European Space Agency Contract No. 4000112300/14/D/MRP “Mars Express Data Planning Tool MEXAR2 Maintenance”.
Autor:
Angelo Oddi, Riccardo Rasconi
Publikováno v:
AAAI
Quantum Computing represents the next big step towards speed boost in computation, which promises major breakthroughs in several disciplines including Artificial Intelligence. This paper investigates the performance of a genetic algorithm to optimize
Publikováno v:
Scopus
Fundamenta informaticae 167 (2019): 93–132. doi:10.3233/FI-2019-1811
info:cnr-pdr/source/autori:Gonzalez, Miguel A.; Oddi, Angelo; Rasconi, Riccardo/titolo:Efficient Approaches for Solving a Multiobjective Energy-aware Job Shop Scheduling Problem/doi:10.3233%2FFI-2019-1811/rivista:Fundamenta informaticae/anno:2019/pagina_da:93/pagina_a:132/intervallo_pagine:93–132/volume:167
RUO. Repositorio Institucional de la Universidad de Oviedo
instname
Fundamenta informaticae 167 (2019): 93–132. doi:10.3233/FI-2019-1811
info:cnr-pdr/source/autori:Gonzalez, Miguel A.; Oddi, Angelo; Rasconi, Riccardo/titolo:Efficient Approaches for Solving a Multiobjective Energy-aware Job Shop Scheduling Problem/doi:10.3233%2FFI-2019-1811/rivista:Fundamenta informaticae/anno:2019/pagina_da:93/pagina_a:132/intervallo_pagine:93–132/volume:167
RUO. Repositorio Institucional de la Universidad de Oviedo
instname
Special issue of the 24th RCRA International Workshop on “Experimental Evaluation of Algorithms for Solving Problems with Combinatorial Explosion” (14 November 2017, Bari, Italy)
Miguel A. González has been supported by the Spanish Governme
Miguel A. González has been supported by the Spanish Governme
Autor:
Andrea Orlandini, Ivan Cibrario Bertolotti, Alessandro Brusaferri, Andrea Ballarino, Amedeo Cesta, Luca Durante, Guido Chizzoli, Riccardo Rasconi, Adriano Valenzano, Stefano Spinelli
Publikováno v:
Factories of the Future ISBN: 9783319943572
FACTORIES OF THE FUTURE: THE ITALIAN FLAGSHIP INITIATIVE, edited by Tolio T., Copani G., Terkaj W., pp. 83–108. Cham, Heidelberg, New York, Dordrecht, London: Springer, 2019
info:cnr-pdr/source/autori:Ballarino, Andrea; Brusaferri, Alessandro; Cesta, Amedeo; Chizzoli, Guido; Bertolotti, Ivan Cibrario; Durante, Luca; Orlandini, Andrea; Rasconi, Riccardo; Spinelli, Stefano; Valenzano, Adriano/titolo:Knowledge Based Modules for Adaptive Distributed Control Systems/titolo_volume:FACTORIES OF THE FUTURE: THE ITALIAN FLAGSHIP INITIATIVE/curatori_volume:Tolio T., Copani G., Terkaj W./editore: /anno:2019
FACTORIES OF THE FUTURE: THE ITALIAN FLAGSHIP INITIATIVE, edited by Tolio T., Copani G., Terkaj W., pp. 83–108. Cham, Heidelberg, New York, Dordrecht, London: Springer, 2019
info:cnr-pdr/source/autori:Ballarino, Andrea; Brusaferri, Alessandro; Cesta, Amedeo; Chizzoli, Guido; Bertolotti, Ivan Cibrario; Durante, Luca; Orlandini, Andrea; Rasconi, Riccardo; Spinelli, Stefano; Valenzano, Adriano/titolo:Knowledge Based Modules for Adaptive Distributed Control Systems/titolo_volume:FACTORIES OF THE FUTURE: THE ITALIAN FLAGSHIP INITIATIVE/curatori_volume:Tolio T., Copani G., Terkaj W./editore: /anno:2019
Modern automation systems are asked to provide a step change toward flexibility and reconfigurability to cope with increasing demand for fast changing and highly fragmented production--which is more and more characterising the manufacturing sector. T
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::dad833f818e26bfc5869cf0197b1c855
https://doi.org/10.1007/978-3-319-94358-9_4
https://doi.org/10.1007/978-3-319-94358-9_4
Autor:
Riccardo Rasconi, Angelo Oddi
Publikováno v:
Integration of Constraint Programming, Artificial Intelligence, and Operations Research ISBN: 9783319930305
CPAIOR
CPAIOR
This paper investigates the performances of a greedy randomized algorithm to optimize the realization of nearest-neighbor compliant quantum circuits. Current technological limitations (decoherence effect) impose that the overall duration (makespan) o
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::f8779ff27b24f6fb6b2e8532abd72ea9
https://doi.org/10.1007/978-3-319-93031-2_32
https://doi.org/10.1007/978-3-319-93031-2_32
Publikováno v:
AI*IA 2018 – Advances in Artificial Intelligence ISBN: 9783030038397
AI*IA
XVIIth International Conference of the Italian Association for Artificial Intelligence, pp. 474–486, Trento, Italy, November 20-23, 2018
info:cnr-pdr/source/autori:Oddi, Angelo; Rasconi, Riccardo; Gonzalez, Miguel A./congresso_nome:XVIIth International Conference of the Italian Association for Artificial Intelligence/congresso_luogo:Trento, Italy/congresso_data:November 20-23, 2018/anno:2018/pagina_da:474/pagina_a:486/intervallo_pagine:474–486
AI*IA
XVIIth International Conference of the Italian Association for Artificial Intelligence, pp. 474–486, Trento, Italy, November 20-23, 2018
info:cnr-pdr/source/autori:Oddi, Angelo; Rasconi, Riccardo; Gonzalez, Miguel A./congresso_nome:XVIIth International Conference of the Italian Association for Artificial Intelligence/congresso_luogo:Trento, Italy/congresso_data:November 20-23, 2018/anno:2018/pagina_da:474/pagina_a:486/intervallo_pagine:474–486
Optimising the energy consumption is one of the most important issues in scheduling nowadays. In this work we consider a multi-objective optimisation for the well-known job-shop scheduling problem. In particular, we minimise the makespan and the ener
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::c4ad14e3269befd490d7efe10fe1b0c2
https://doi.org/10.1007/978-3-030-03840-3_35
https://doi.org/10.1007/978-3-030-03840-3_35