Zobrazeno 1 - 10
of 21
pro vyhledávání: '"Riccardo, De Feo"'
Autor:
Riccardo De Feo, Elina Hämäläinen, Eppu Manninen, Riikka Immonen, Juan Miguel Valverde, Xavier Ekolle Ndode-Ekane, Olli Gröhn, Asla Pitkänen, Jussi Tohka
Publikováno v:
Frontiers in Neurology, Vol 13 (2022)
Registration-based methods are commonly used in the automatic segmentation of magnetic resonance (MR) brain images. However, these methods are not robust to the presence of gross pathologies that can alter the brain anatomy and affect the alignment o
Externí odkaz:
https://doaj.org/article/c850e16bb8b54a38ab7a0292a30b4aec
Autor:
Eppu Manninen, Karthik Chary, Riccardo De Feo, Elina Hämäläinen, Pedro Andrade, Tomi Paananen, Alejandra Sierra, Jussi Tohka, Olli Gröhn, Asla Pitkänen
Publikováno v:
Biomedicines, Vol 10, Iss 11, p 2721 (2022)
It is necessary to develop reliable biomarkers for epileptogenesis and cognitive impairment after traumatic brain injury when searching for novel antiepileptogenic and cognition-enhancing treatments. We hypothesized that a multiparametric magnetic re
Externí odkaz:
https://doaj.org/article/c63f6e75523345e79282156b0003c5e6
Autor:
Kimberley M. Timmins, Irene C. van der Schaaf, Edwin Bennink, Ynte M. Ruigrok, Xingle An, Michael Baumgartner, Pascal Bourdon, Riccardo De Feo, Tommaso Di Noto, Florian Dubost, Augusto Fava-Sanches, Xue Feng, Corentin Giroud, Inteneural Group, Minghui Hu, Paul F. Jaeger, Juhana Kaiponen, Michał Klimont, Yuexiang Li, Hongwei Li, Yi Lin, Timo Loehr, Jun Ma, Klaus H. Maier-Hein, Guillaume Marie, Bjoern Menze, Jonas Richiardi, Saifeddine Rjiba, Dhaval Shah, Suprosanna Shit, Jussi Tohka, Thierry Urruty, Urszula Walińska, Xiaoping Yang, Yunqiao Yang, Yin Yin, Birgitta K. Velthuis, Hugo J. Kuijf
Publikováno v:
NeuroImage, Vol 238, Iss , Pp 118216- (2021)
Accurate detection and quantification of unruptured intracranial aneurysms (UIAs) is important for rupture risk assessment and to allow an informed treatment decision to be made. Currently, 2D manual measures used to assess UIAs on Time-of-Flight mag
Externí odkaz:
https://doaj.org/article/dca4f5da06bc407783d684467324f4e5
Autor:
Riccardo De Feo, Artem Shatillo, Alejandra Sierra, Juan Miguel Valverde, Olli Gröhn, Federico Giove, Jussi Tohka
Publikováno v:
NeuroImage, Vol 229, Iss , Pp 117734- (2021)
Skull-stripping and region segmentation are fundamental steps in preclinical magnetic resonance imaging (MRI) studies, and these common procedures are usually performed manually. We present Multi-task U-Net (MU-Net), a convolutional neural network de
Externí odkaz:
https://doaj.org/article/8bd127d8eac04df9b8c4ea27edf1cfa4
Autor:
Juan Miguel Valverde, Artem Shatillo, Riccardo De Feo, Olli Gröhn, Alejandra Sierra, Jussi Tohka
Publikováno v:
Frontiers in Neuroscience, Vol 14 (2020)
We present a fully convolutional neural network (ConvNet), named RatLesNetv2, for segmenting lesions in rodent magnetic resonance (MR) brain images. RatLesNetv2 architecture resembles an autoencoder and it incorporates residual blocks that facilitate
Externí odkaz:
https://doaj.org/article/636b8a99577d4d538c4c1e25a821e605
Autor:
Maria Giovanna Di Trani, Lucia Manganaro, Amanda Antonelli, Michele Guerreri, Riccardo De Feo, Carlo Catalano, Silvia Capuani
Publikováno v:
Frontiers in Physics, Vol 7 (2019)
Diffusion neuro-MRI has benefited significantly from sophisticated pre-processing procedures aimed at improving image quality and diagnostic. In this work, diffusion-weighted imaging (DWI) was used with artifact correction and the apparent diffusion
Externí odkaz:
https://doaj.org/article/029afac0fcfd4787a661b10a9be13b3f
Autor:
Juan Miguel Valverde, Vandad Imani, Ali Abdollahzadeh, Riccardo De Feo, Mithilesh Prakash, Robert Ciszek, Jussi Tohka
Publikováno v:
Journal of Imaging, Vol 7, Iss 4, p 66 (2021)
(1) Background: Transfer learning refers to machine learning techniques that focus on acquiring knowledge from related tasks to improve generalization in the tasks of interest. In magnetic resonance imaging (MRI), transfer learning is important for d
Externí odkaz:
https://doaj.org/article/11a86425551e4a828484cf0cedb653a6
Autor:
Pitkänen, Eppu Manninen, Karthik Chary, Riccardo De Feo, Elina Hämäläinen, Pedro Andrade, Tomi Paananen, Alejandra Sierra, Jussi Tohka, Olli Gröhn, Asla
Publikováno v:
Biomedicines; Volume 10; Issue 11; Pages: 2721
It is necessary to develop reliable biomarkers for epileptogenesis and cognitive impairment after traumatic brain injury when searching for novel antiepileptogenic and cognition-enhancing treatments. We hypothesized that a multiparametric magnetic re
Autor:
Eppu, Manninen, Karthik, Chary, Riccardo, De Feo, Elina, Hämäläinen, Pedro, Andrade, Tomi, Paananen, Alejandra, Sierra, Jussi, Tohka, Olli, Gröhn, Asla, Pitkänen
It is necessary to develop reliable biomarkers for epileptogenesis and cognitive impairment after traumatic brain injury when searching for novel antiepileptogenic and cognition-enhancing treatments. We hypothesized that a multiparametric magnetic re
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=pmid_dedup__::259273eb07d3bd71dbbe4f7d6b318e06
https://hdl.handle.net/11573/1670674
https://hdl.handle.net/11573/1670674
Publikováno v:
Neuroinformatics
We present MedicDeepLabv3+, a convolutional neural network that is the first completely automatic method to segment cerebral hemispheres in magnetic resonance (MR) volumes of rats with lesions. MedicDeepLabv3+ improves the state-of-the-art DeepLabv3+