Zobrazeno 1 - 10
of 69
pro vyhledávání: '"Riccarda Rossi"'
Publikováno v:
Annali di Matematica Pura ed Applicata (1923 -). 202:1271-1312
The paper studies the asymptotic analysis of a model coupling elastoplasticity and damage depending on three parameters—governing viscosity, plastic hardening, and convergence rate of plastic strain and displacement to equilibrium—as they vanish
Autor:
Vito Crismale, Riccarda Rossi
Publikováno v:
SIAM Journal on Mathematical Analysis. 53:3420-3492
A rate-independent model coupling small strain associative elasto-plasticity and damage is studied via a 'vanishing-viscosity' analysis with respect to all the variables describing the system. This extends the analysis performed for the same system i
In this paper we analyze a new temperature-dependent model for adhesive contact that encompasses nonlocal adhesive forces and damage effects, as well as nonlocal heat flux contributions on the contact surface. The related PDE system combines heat equ
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::37313fc4e58cee1b09e8c26085b39608
http://hdl.handle.net/11379/555595
http://hdl.handle.net/11379/555595
Autor:
Riccarda Rossi, Giovanni A. Bonaschi
Publikováno v:
Annali di Matematica Pura ed Applicata (1923 -). 199:81-126
In this paper, we investigate the origin of the balanced viscosity solution concept for rate-independent evolution, in the setting of a finite-dimensional space. Namely, given a family of dissipation potentials $$(\Psi _n)_{n\in {\mathbb {N}}}$$ with
Publikováno v:
Mathematical Modeling in Cultural Heritage ISBN: 9783030580766
The aim of this note is twofold. First of all, we propose a very partial survey on the mathematical modeling and analysis of adhesive contact and delamination. Secondly, we advance a new model for adhesive contact with thermal effects that includes n
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::3a03a0355a10dc47c28f823d76799bb3
http://hdl.handle.net/11379/549917
http://hdl.handle.net/11379/549917
Publikováno v:
Journal of Elasticity
Journal of Elasticity, Springer Verlag, 2020, 141 (1), pp.75-107. ⟨10.1007/s10659-020-09776-7⟩
Journal of Elasticity, Springer Verlag, 2020, 141 (1), pp.75-107. ⟨10.1007/s10659-020-09776-7⟩
In this paper, we extend the asymptotic analysis in (Licht et al. in J. Math. Pures Appl. 99:685–703, 2013) performed, in the framework of small strains, on a structure consisting of two linearly elastic bodies connected by a thin soft nonlinear Ke
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::ab5a902e7abc20afd9708751275d875f
http://arxiv.org/abs/1912.05600
http://arxiv.org/abs/1912.05600
Autor:
Riccarda Rossi
Publikováno v:
ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik. 98:1123-1189
Publikováno v:
Journal de Mathématiques Pures et Appliquées 127 (2019): 1–66. doi:10.1016/j.matpur.2018.06.022
info:cnr-pdr/source/autori:R. Rossi, G. Savaré, A. Segatti, and U. Stefanelli/titolo:Weighted Energy-Dissipation principle for gradient flows in metric spaces/doi:10.1016%2Fj.matpur.2018.06.022/rivista:Journal de Mathématiques Pures et Appliquées/anno:2019/pagina_da:1/pagina_a:66/intervallo_pagine:1–66/volume:127
info:cnr-pdr/source/autori:R. Rossi, G. Savaré, A. Segatti, and U. Stefanelli/titolo:Weighted Energy-Dissipation principle for gradient flows in metric spaces/doi:10.1016%2Fj.matpur.2018.06.022/rivista:Journal de Mathématiques Pures et Appliquées/anno:2019/pagina_da:1/pagina_a:66/intervallo_pagine:1–66/volume:127
This paper develops the so-called Weighted Energy-Dissipation (WED) variational approach for the analysis of gradient flows in metric spaces. This focuses on the minimization of the parameter-dependent global-in-time functional of trajectories I e [
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::80b66528af18980226f546bc4ba6d66f
http://hdl.handle.net/11565/4044257
http://hdl.handle.net/11565/4044257
This article is the third one in a series of papers by the authors on vanishing-viscosity solutions to rate-independent damage systems. While in the first two papers (Knees, D. et al. 2013 Math. Models Methods Appl. Sci.23(4), 565–616; Knees, D. et
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::1c424ccbdcbe4e3196d853d1aaed12f1
http://hdl.handle.net/11583/2723220
http://hdl.handle.net/11583/2723220
The goal of this work is to analyze a model for the rate-independent evolution of sets with finite perimeter. The evolution of the admissible sets is driven by that of a given time-dependent set, which has to include the admissible sets and hence is
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::76cb61df037154ae57df9697941d6e51