Zobrazeno 1 - 10
of 45
pro vyhledávání: '"Ricardo Landa"'
Publikováno v:
IEEE Access, Vol 12, Pp 86144-86159 (2024)
Expensive optimization problems are characterized by the significant amount of time and resources needed to determine the quality of potential solutions. This poses severe limitations for the application of metaheuristic optimization methods, such as
Externí odkaz:
https://doaj.org/article/9210c87c494b4ecaa923e4737c4d1c01
Publikováno v:
IEEE Access, Vol 10, Pp 117281-117303 (2022)
Evolutionary multiobjective algorithms have become a popular choice to tackle the clustering problem. On the one hand, the simultaneous optimization of complementary clustering criteria offers an increased robustness to changes in data characteristic
Externí odkaz:
https://doaj.org/article/299fd3c04d9345da8762903c464f7a07
Autor:
Norma Yvett González-Bobadilla, Ricardo Landa-Gutiérrez, Rodrigo Rosas-Fernández, Christian Berenice Hernández-Pérez
Publikováno v:
Alergia, Asma e Inmunología Pediátricas. 31:155-171
Autor:
Ricardo Landa Reyes, Jesús Olivares Villa, Alejandro Alcaráz García, Carina Xóchil Gómez Fröde
Publikováno v:
Revista de la Facultad de Medicina. 64:34-45
Aunque la broncoaspiración es una complicación poco frecuente de la anestesia; en este caso se presentó un desafortunado evento fatal a pesar de haberse tomado las medidas precautorias correspondientes. Te invitamos a analizar y realizar una valor
Publikováno v:
Revista de la Facultad de Medicina. 64:48-59
Publikováno v:
Revista de la Facultad de Medicina. 63:36-45
Publikováno v:
Advances in Computational Intelligence ISBN: 9783031194924
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::6d4a41a15ab89ceb5ecf97b6c49e49c4
https://doi.org/10.1007/978-3-031-19493-1_10
https://doi.org/10.1007/978-3-031-19493-1_10
Publikováno v:
In Applied Soft Computing Journal 2011 11(1):337-344
Publikováno v:
Journal of Heuristics. 25:107-139
This paper presents a hybrid approach that combines an evolutionary algorithm with a classical multi-objective optimization technique to incorporate the preferences of the decision maker into the search process. The preferences are given as a vector
Publikováno v:
Lecture Notes in Computer Science ISBN: 9783030125974
EMO
EMO
Weight adaptation methods can enhance the diversity of solutions obtained by decomposition-based approaches when addressing irregular Pareto front shapes. Generally, these methods adapt the location of each weight vector during the search process. Ho
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::142d27954fc4c1a688f0847e2b82c647
https://doi.org/10.1007/978-3-030-12598-1_18
https://doi.org/10.1007/978-3-030-12598-1_18