Zobrazeno 1 - 6
of 6
pro vyhledávání: '"Ricardo Garcia Lopez"'
Publikováno v:
Advances in Mathematics. 174(1):35-56
Let Ank denote the affine space of dimension n over a field k; let XCA n k be an arrangement of linear subvarieties. Set R 1⁄4 k1⁄2x1;y; xn and let ICR denote an ideal which defines X : In this paper we study the local cohomology modules H IðRÞ
Autor:
Ricardo Garcia Lopez
Publikováno v:
Journal of Number Theory. 86(1):156-162
Assume a polynomial f ∈ F q [ x , y ] and an additive character ψ of F q are given. From a set of exponential sums defined by f and ψ one can define an L-function L f ( t ), which by results of Dwork and Grothedieck is known to be a rational func
Autor:
Ricardo Garcia Lopez
Publikováno v:
manuscripta mathematica. 97:45-58
We give upper bounds for the absolute value of exponential sums in several variables attached to certain polynomials with coefficients in a finite field. This bounds are given in terms of invariants of the singularities of the projective hypersurface
Autor:
Ricardo Garcia Lopez
We consider a functional analytic variant of the notion of Tate space, namely the category of those topological vector spaces which have a direct sum decomposition where one summand is nuclear Frechet space and the other is the dual of a nuclear Frec
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::aa240ad7622d01f86df1a48485ff0d8d
http://arxiv.org/abs/1211.4722
http://arxiv.org/abs/1211.4722
Autor:
Ricardo Garcia Lopez
Publikováno v:
Manuscripta Mathematica. 76:45-57
Autor:
Ricardo Garcia Lopez
Publikováno v:
Dipòsit Digital de la UB
Universidad de Barcelona
Universidad de Barcelona
Preprint enviat per a la seva publicació en una revista científica: Mathematische Zeitschrift. 1991, Vol. 208, p. 11-21. [https://doi.org/10.1007/BF02571506]
In thís paper we give sorne bounds for the minimal number of generators of a finitel
In thís paper we give sorne bounds for the minimal number of generators of a finitel
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::9444c98786aeeab4b5543d622c8b875d
http://hdl.handle.net/2445/151839
http://hdl.handle.net/2445/151839