Zobrazeno 1 - 10
of 19
pro vyhledávání: '"Ricardo Enguiça"'
Publikováno v:
Electronic Journal of Differential Equations, Vol 2017, Iss 245,, Pp 1-17 (2017)
In this article we analyze some possibilities of finding positive solutions for second-order boundary-value problems with the Dirichlet and periodic boundary conditions, for which the corresponding Green's functions change sign. The obtained resul
Externí odkaz:
https://doaj.org/article/2493c158b29546568e6b35a1f404a409
Autor:
Ricardo Enguiça, Nuno D. Lopes
Publikováno v:
Journal of Mathematics in Industry, Vol 13, Iss 1, Pp 1-18 (2023)
Abstract In this paper, we model mass running urban races, taking into consideration several conditioning factors. The main goal is to find ideal configurations of the start of the race, splitting it into several waves, reducing the density of athlet
Externí odkaz:
https://doaj.org/article/57000f2913d3425ebfaf788a8b656c80
Autor:
Ricardo Enguiça, Filipa Soares
Publikováno v:
Mathematics, Vol 11, Iss 7, p 1707 (2023)
We consider a time series with real data from a water lift station, equipped with three water pumps which are activated and deactivated depending on certain starting and halting thresholds. Given the water level and the number of active pumps, both r
Externí odkaz:
https://doaj.org/article/066a1aa4acbf419a86464c819c943fca
Autor:
Luís Sanchez, Ricardo Enguiça
Publikováno v:
Boundary Value Problems, Vol 2006 (2006)
We consider the boundary value problem for the nonlinear Poisson equation with a nonlocal term −Δu=f(u,∫Ug(u)), u|∂U=0. We prove the existence of a positive radial solution when f grows linearly in u, using
Externí odkaz:
https://doaj.org/article/5e30361d068c4a278eb076847bef590b
Autor:
Sandra Aleixo, Ricardo Enguiça, Sérgio Lopes, Iola Pinto, Pedro Matias, Lucía Fernandez-Suarez
Hydropressor systems are of paramount importance in keeping water supplies running properly. A typical such device consists of two (or more) identical electropumps operating alternately, so as to avoid downtime as much as possible. A first challenge
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::4487c0ed9a2aa11ecb095ff21b83df47
https://doi.org/10.33774/miir-2022-ntj1x
https://doi.org/10.33774/miir-2022-ntj1x
Publikováno v:
Computer-Aided Design. 150:103312
Autor:
Ricardo Enguiça, Rafael Ortega
Publikováno v:
Repositório Científico de Acesso Aberto de Portugal
Repositório Científico de Acesso Aberto de Portugal (RCAAP)
instacron:RCAAP
Repositório Científico de Acesso Aberto de Portugal (RCAAP)
instacron:RCAAP
Submitted by Isabel Melo (imelo@sa.isel.pt) on 2019-09-12T08:53:56Z No. of bitstreams: 1 Functions_REnguica.pdf: 416827 bytes, checksum: 8bca8954503945f20a9bcf38a431d7f1 (MD5) Made available in DSpace on 2019-09-12T08:53:56Z (GMT). No. of bitstreams:
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::56801fd8c5c4b0858d56eac1786d613f
Autor:
Amaral, Paula, Sílvia, Barbeiro, Raquel, Barreira, Luís, Cavique, Joaquim, Correia, Manuel, Cruz, Ricardo, Enguiça, Nuno, Lopes, Michael, McPhail, Jorge, Santos, Paula, Simões, Florian, Wechsung
Publikováno v:
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Agência para a Sociedade do Conhecimento (UMIC)-FCT-Sociedade da Informação
instacron:RCAAP
Agência para a Sociedade do Conhecimento (UMIC)-FCT-Sociedade da Informação
instacron:RCAAP
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=od______3056::756b24cdba4229127090db2bc9dae206
Autor:
Ricardo Enguiça, Alberto Cabada
Publikováno v:
Nonlinear Analysis: Theory, Methods & Applications. 74:3112-3122
In this paper we make an exhaustive study of the fourth order linear operator u ( 4 ) + M u coupled with the clamped beam conditions u ( 0 ) = u ( 1 ) = u ′ ( 0 ) = u ′ ( 1 ) = 0 . We obtain the exact values on the real parameter M for which this
Publikováno v:
Mediterranean Journal of Mathematics. 4:191-214
We prove general existence results for \(x^{\prime\prime} = f(x)g(x^{\prime}), x(0) = x_{0}, x^{\prime}(0) = x_{1},\) where f and g need not be continuous or monotone. Moreover neither f nor g need be bounded around, respectively, x0 and x1, thus all