Zobrazeno 1 - 10
of 177
pro vyhledávání: '"Rhandi, Abdelaziz"'
Assuming a weighted Nash type inequality for the generator $-A$ of a Markov semigroup, we prove a weighted Nash type inequality for its fractional power and deduce non-uniform bounds on the transition kernel corresponding to the Markov semigroup gene
Externí odkaz:
http://arxiv.org/abs/2408.12679
In this paper we consider the vector-valued Schr\"{o}dinger operator $-\Delta + V$, where the potential term $V$ is a matrix-valued function whose entries belong to $L^1_{\rm loc}(\mathbb{R}^d)$ and, for every $x\in\mathbb{R}^d$, $V(x)$ is a symmetri
Externí odkaz:
http://arxiv.org/abs/2401.00479
In this paper, we delve into the study of evolution equations that exhibit white-noise boundary conditions. Our primary focus is to establish a necessary and sufficient condition for the existence of solutions, by utilizing the concept of admissible
Externí odkaz:
http://arxiv.org/abs/2305.11496
We prove global Sobolev regularity and pointwise upper bounds for the gradient of transition densities associated with second order differential operators in $\mathbb{R}^d$ with unbounded diffusion, drift and potential terms.
Comment: 24 pages,
Comment: 24 pages,
Externí odkaz:
http://arxiv.org/abs/2209.15358
We prove first that the realization $A_{\min}$ of $A:=\mathrm{div}(Q\nabla)-V$ in $L^2(\mathbb{R}^d)$ with unbounded coefficients generates a symmetric sub-Markovian and ultracontractive semigroup on $L^2(\mathbb{R}^d)$ which coincides on $L^2(\mathb
Externí odkaz:
http://arxiv.org/abs/2204.12146
Autor:
Goldstein, Gisele R., Goldstein, Jerome A., Kogoj, Alessia E., Rhandi, Abdelaziz, Tacelli, Cristian
In this paper we generalize the instantaneous blowup result from [3] and [15] to the heat equation perturbed by singular potentials on the Heisenberg group.
Externí odkaz:
http://arxiv.org/abs/2204.04548
Autor:
Mugnolo, Delio, Rhandi, Abdelaziz
We prove first existence of a classical solution to a class of parabolic problems with unbounded coefficients on metric star graphs subject to Kirchhoff-type conditions. The result is applied to the Ornstein--Uhlenbeck and the harmonic oscillator ope
Externí odkaz:
http://arxiv.org/abs/2109.12369
Publikováno v:
In Journal de mathématiques pures et appliquées July 2024 187:171-206
In this paper we consider the symmetric Kolmogorov operator $L=\Delta +\frac{\nabla \mu}{\mu}\cdot \nabla$ on $L^2(\mathbb R^N,d\mu)$, where $\mu$ is the density of a probability measure on $\mathbb R^N$. Under general conditions on $\mu$ we prove fi
Externí odkaz:
http://arxiv.org/abs/2104.03811
Autor:
Maichine, Abdallah, Rhandi, Abdelaziz
In the paper \cite{KLMR} the $L^p$-realization $L_p$ of the matrix Schr\"odinger operator $\mathcal{L}u=div(Q\nabla u)+Vu$ was studied. The generation of a semigroup in $L^p(\R^d,\C^m)$ and characterization of the domain $D(L_p)$ has been established
Externí odkaz:
http://arxiv.org/abs/1802.02772