Zobrazeno 1 - 10
of 28
pro vyhledávání: '"Reza, Md Ramiz"'
Autor:
Kujur, Ashish, Reza, Md Ramiz
A well known result of Brown and Halmos shows that the Toeplitz operators induced by $L^{\infty}(\mathbb T)$ symbols on the Hardy space of the unit disc $\mathbb D$ are characterized by the operator identity $T_{\bar{z}}AT_z=A,$ where $T_z, T_{\bar{z
Externí odkaz:
http://arxiv.org/abs/2411.02962
For a positive integer $m$ and a finite non-negative Borel measure $\mu$ on the unit circle, we study the Hadamard multipliers of higher order weighted Dirichlet-type spaces $\mathcal H_{\mu, m}$. We show that if $\alpha>\frac{1}{2},$ then for any $f
Externí odkaz:
http://arxiv.org/abs/2401.00548
Autor:
Chavan, Sameer, Reza, Md. Ramiz
Let $(S_1, S_2)$ be a bi-isometry, that is, a pair of commuting isometries $S_1$ and $S_2$ on a complex Hilbert space $\mathscr H.$ By the von Neumann-Wold decomposition, the hyper-range $\mathscr H_\infty(S_1):=\cap_{n=0}^\infty S^n_1\mathscr H$ of
Externí odkaz:
http://arxiv.org/abs/2302.05423
We prove a local Douglas formula for higher order weighted Dirichlet-type integrals. With the help of this formula, we study the multiplier algebra of the associated higher order weighted Dirichlet-type spaces $\mathcal H_{\pmb\mu},$ induced by an $m
Externí odkaz:
http://arxiv.org/abs/2207.02525
The Cauchy dual subnormality problem (for short, CDSP) asks whether the Cauchy dual of a $2$-isometry is subnormal. In this paper, we address this problem for cyclic $2$-isometries. In view of some recent developments in operator theory on function s
Externí odkaz:
http://arxiv.org/abs/2103.10059
We obtain a formula that relates the spherical moments of the multiplication tuple on a Dirichlet-type space to a complex moment problem in several variables. This can be seen as the ball-analogue of a formula originally invented by Richter. We capit
Externí odkaz:
http://arxiv.org/abs/2001.09616
Autor:
Reza, Md. Ramiz, Zhang, Genkai
We study the Hausdorff moment problem for a class of sequences, namely $(r(n))_{n\in\mathbb Z_+},$ where $r$ is a rational function in the complex plane. We obtain a necessary condition for such sequence to be a Hausdorff moment sequence. We found an
Externí odkaz:
http://arxiv.org/abs/1903.00116
Autor:
Misra, Gadadhar, Reza, Md. Ramiz
Publikováno v:
Illinois J. Math. 63, no. 2 (2019), 193-217
A curvature inequality is established for contractive commuting tuples of operators in the Cowen-Douglas class of rank n. Properties of the extremal operators, that is, the operators which achieve equality, are investigated. Specifically, a substanti
Externí odkaz:
http://arxiv.org/abs/1802.01386
Autor:
Gupta, Rajeev, Reza, Md Ramiz
We show that the complex normed linear space $\ell^1(n),$ $n>1,$ has no isometric embedding into $k\times k$ complex matrices for any $k\in \mathbb{N}$ and discuss a class of infinite dimensional operator space structures on it.
Comment: 6 pages
Comment: 6 pages
Externí odkaz:
http://arxiv.org/abs/1605.03769
Autor:
Reza, Md. Ramiz
Fix a bounded planar domain $\Omega.$ If an operator $T,$ in the Cowen-Douglas class $B_1(\Omega),$ admits the compact set $\bar{\Omega}$ as a spectral set, then the curvature inequality $\mathcal K_T(w) \leq - 4 \pi^2 S_\Omega(w,w)^2,$ where $S_\Ome
Externí odkaz:
http://arxiv.org/abs/1604.07758