Zobrazeno 1 - 10
of 142
pro vyhledávání: '"Reyes, Enrique G."'
Autor:
Magnot, Jean-Pierre, Reyes, Enrique G.
We start from the classical Kadomtsev-Petviashvili hierarchy posed on formal pseudo-differential operators, and we produce two hierarchies of non-linear equations posed on non-formal pseudo-differential operators lying in the Kontsevich and Vishik's
Externí odkaz:
http://arxiv.org/abs/2409.13771
We propose a definition of a diffiety based on the theory of Frolicher structures. As a consequence, we obtain a natural Vinogradov sequence and, under the assumption of the existence of a suitable derivation, we can form on it a Kadomtsev-Petviashvi
Externí odkaz:
http://arxiv.org/abs/2212.07583
Publikováno v:
J. Math. Phys. 63, 093501 (2022)
We review the integration of the KP hierarchy in several non-standard contexts. Specifically, we consider KP in the following associative differential algebras: an algebra equipped with a nilpotent derivation; an algebra of functions equipped with a
Externí odkaz:
http://arxiv.org/abs/2203.07062
Publikováno v:
In Journal of Differential Equations 25 December 2024 413:805-827
In this paper we discuss integrable higher order equations {\em of Camassa-Holm (CH) type}. Our higher order CH-type equations are "geometrically integrable", that is, they describe one-parametric families of pseudo-spherical surfaces, in a sense exp
Externí odkaz:
http://arxiv.org/abs/2111.07733
Autor:
Qiao, Zhijun, Reyes, Enrique G.
Publikováno v:
In Applied Numerical Mathematics May 2024 199:165-176
Autor:
Magnot, Jean-Pierre, Reyes, Enrique G.
We equip the regular Fr\'echet Lie group of invertible, odd-class, classical pseudodifferential operators $Cl^{0,*}_{odd}(M,E)$ -- in which $M$ is a compact smooth manifold and $E$ a (complex) vector bundle over $M$ -- with pseudo-Riemannian metrics,
Externí odkaz:
http://arxiv.org/abs/2104.08159
We define rigorously operators of the form $f(\partial_t)$, in which $f$ is an analytic function on a simply connected domain. Our formalism is based on the Borel transform on entire functions of exponential type. We study existence and regularity of
Externí odkaz:
http://arxiv.org/abs/1907.02617
We study integrability --in the sense of admitting recursion operators-- of two nonlinear equations which are known to possess compacton solutions: the $K(m,n)$ equation introduced by Rosenau and Hyman \[ D_t(u) + D_x(u^m) + D_x^3(u^n) = 0 \; , \] an
Externí odkaz:
http://arxiv.org/abs/1904.01291
Autor:
Magnot, Jean-Pierre1,2 (AUTHOR) magnot@math.cnrs.fr, Reyes, Enrique G.3 (AUTHOR) enrique.reyes@usach.cl
Publikováno v:
Symmetry (20738994). Feb2024, Vol. 16 Issue 2, p192. 14p.