Zobrazeno 1 - 10
of 1 124
pro vyhledávání: '"Reversible-jump Markov chain Monte Carlo"'
Publikováno v:
Egyptian Journal of Remote Sensing and Space Sciences, Vol 25, Iss 3, Pp 851-861 (2022)
Aiming at improving the quality and efficiency of urban road extraction from High-Resolution Remote Sensing Image (HRRSI), this paper focuses on the top-to-down modeling framework which is constructed from network level to pixel level, and further pr
Externí odkaz:
https://doaj.org/article/13a380346f384334926d11bfb30152ec
Publikováno v:
IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, Vol 15, Pp 2087-2098 (2022)
To extract complicated road network from remote sensing images on urban scenes, this article presents a clustering point process (CPP) based network topology structure constrained road extraction algorithm. Firstly, the CPP is constructed to model th
Externí odkaz:
https://doaj.org/article/b5e07f56159149f3a75add1a70134943
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
ISPRS Open Journal of Photogrammetry and Remote Sensing, Vol 5, Iss , Pp 100017- (2022)
Even more than 75 years after the Second World War, numerous unexploded bombs (duds) linger in the ground and pose a considerable hazard to society. The areas containing these duds are documented in so-called impact maps, which are based on locations
Externí odkaz:
https://doaj.org/article/6cfb029b4f534115aa624743db9b2924
Autor:
Karim Ben Alaya, Laszlo Czuni
Publikováno v:
IEEE Access, Vol 9, Pp 69143-69156 (2021)
Our article deals with the detection and model generation of complex objects with curvilinear parts, like trees, with stochastic relaxation. The proposed algorithm can rely on any initial estimation of object parts as a probability map (like those ge
Externí odkaz:
https://doaj.org/article/ca973c6332cd433ca0d7b53506d9bb58
Publikováno v:
BMC Medical Research Methodology, Vol 20, Iss 1, Pp 1-14 (2020)
Abstract Background Dropout is a common problem in longitudinal clinical trials and cohort studies, and is of particular concern when dropout occurs for reasons that may be related to the outcome of interest. This paper reviews common parametric mode
Externí odkaz:
https://doaj.org/article/b2d737e456804e7e93a8dbd0e8dac11c
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Freyman, William A., Höhna, Sebastian
Publikováno v:
Systematic Biology, 2018 Mar 01. 67(2), 195-215.
Externí odkaz:
https://www.jstor.org/stable/26581932
Publikováno v:
ISPRS International Journal of Geo-Information, Vol 11, Iss 7, p 402 (2022)
The geometric features of ground objects can reflect the shape, contour, length, width, and pixel distribution of ground objects and have important applications in the process of object detection and recognition. However, the geometric features of ob
Externí odkaz:
https://doaj.org/article/e8c5be1426194130ab44416cfa9ef229
Publikováno v:
SoftwareX, Vol 14, Iss , Pp 100664- (2021)
Reversible jump Markov chain Monte Carlo (RJMCMC) is a powerful Bayesian trans-dimensional algorithm for performing model selection while inferring the distribution of model parameters. The present work introduces CU-MSDSp as an open source and fully
Externí odkaz:
https://doaj.org/article/1f901cf205a34cf6973aa81f300aeb67