Zobrazeno 1 - 10
of 86
pro vyhledávání: '"Ressayre, Nicolas"'
Autor:
Ressayre, Nicolas, Francone, Luca
Consider the complete flag variety $X$ of any complex semi-simple algebraic group $G$. We show that the structure coefficients of the Belkale-Kumar product $\odot_0$, on the cohomology ${\operatorname H}^{*}(X,\mathbb{Z})$, are all either $0$ or $1$.
Externí odkaz:
http://arxiv.org/abs/2312.02574
The Littlewood-Richardson coefficients $c^\nu_{\lambda,\mu}$ are the multiplicities in the tensor product decomposition of two irreducible representations of the general linear group GL$(n, {\mathbb C})$. They are parametrized by the triples of parti
Externí odkaz:
http://arxiv.org/abs/2206.03054
Autor:
Bulois, Michaël, Ressayre, Nicolas
Publikováno v:
In Journal of Algebra 1 June 2024 647:515-532
The Newell-Littlewood numbers are tensor product multiplicities of Weyl modules for the classical groups in the stable range. Littlewood-Richardson coefficients form a special case. Klyachko connected eigenvalues of sums of Hermitian matrices to the
Externí odkaz:
http://arxiv.org/abs/2107.03152
Autor:
Francone, Luca, Ressayre, Nicolas
Let g be a complex semi-simple Lie algebra and g be a semisimple subalgebra of g. Consider the branching problem of decomposing the simple g-representations V as a sum of simple grepresentations V. When g = g x g, it is the tensor product decompositi
Externí odkaz:
http://arxiv.org/abs/2104.14187
Autor:
Bulois, Michaël, Ressayre, Nicolas
Let ${\mathfrak g}$ be a complex simple Lie algebra with Borel subalgebra ${\mathfrak b}$. Consider the semidirect product $I{\mathfrak b}={\mathfrak b}\ltimes{\mathfrak b}^*$, where the dual ${\mathfrak b}^*$ of ${\mathfrak b}$, is equipped with the
Externí odkaz:
http://arxiv.org/abs/2002.03395
Autor:
Ressayre, Nicolas
The Kronecker coefficients and the Littlewood-Richardson coefficients are nonnegative integers depending on three partitions. By definition, these coefficients are the multiplicities of the tensor product decomposition of two irreducible representati
Externí odkaz:
http://arxiv.org/abs/1907.07931
Autor:
Kumar, Shrawan, Ressayre, Nicolas
In this paper, we are interested in the decomposition of the tensor product of two representations ofa symmetrizable Kac-Moody Lie algebra ${\mathfrak g}$, or more precisely in the tensor cone of~${\mathfrak g}$.As usual, we parametrize the integrabl
Externí odkaz:
http://arxiv.org/abs/1902.02049
Autor:
Koiran, Pascal, Ressayre, Nicolas
This paper is devoted to the factorization of multivariate polynomials into products of linear forms, a problem which has applications to differential algebra, to the resolution of systems of polynomial equations and to Waring decomposition (i.e., de
Externí odkaz:
http://arxiv.org/abs/1807.03663
Autor:
Ressayre, Nicolas
In this paper, we are interested in the decomposition of the tensor product of two representations of a symmetrizable Kac-Moody Lie algebra $\mathfrak g$. Let $P\_+$ be the set of dominant integral weights. For $\lambda\in P\_+$ , $L(\lambda)$ denote
Externí odkaz:
http://arxiv.org/abs/1701.02176