Zobrazeno 1 - 10
of 222
pro vyhledávání: '"Reservoir sampling"'
Publikováno v:
Machine Learning with Applications, Vol 15, Iss , Pp 100530- (2024)
Machine learning models for near collision detection in autonomous vehicles promise enhanced predictive power. However, training on these large datasets presents storage and computational challenges, particularly when operated on conventional computi
Externí odkaz:
https://doaj.org/article/8cf6aaeea5f5479ca0bc26c0f7b299bb
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
When evaluating complex analytical queries on high-velocity data streams, many systems cannot run those queries on all elements of a stream. Sampling is a widely used method to reduce the system load by replacing the input with a representative yet m
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::0c5063b89bf8208fa4f478292a1c042f
Autor:
Saiful Akbar, Berman Danyel Sinaga
Publikováno v:
International Journal on Electrical Engineering and Informatics. 13:620-637
Publikováno v:
The Journal of Supercomputing. 78:3561-3604
Both data shuffling and cache recovery are essential parts of the Spark system, and they directly affect Spark parallel computing performance. Existing dynamic partitioning schemes to solve the data skewing problem in the data shuffle phase suffer fr
Publikováno v:
ACM Transactions on Knowledge Discovery from Data. 16:1-30
The streams where multiple transactions are associated with the same key are prevalent in practice, e.g., a customer has multiple shopping records arriving at different time. Itemset frequency estimation on such streams is very challenging since samp
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
Malaysian Journal of Computing, Vol 2, Iss 2, Pp 1-12 (2014)
Top-k frequent pattern discovery is indeed an association analysis concerning automatic extraction of the k most correlated and interesting patterns from large databases. Current studies in association mining concentrate on how to effectively find al
Externí odkaz:
https://doaj.org/article/9576657fb0734c9e99b79f95f78a177a
Publikováno v:
ACM Transactions on Knowledge Discovery from Data. 15:1-52
We introduce Tiered Sampling , a novel technique for estimating the count of sparse motifs in massive graphs whose edges are observed in a stream. Our technique requires only a single pass on the data and uses a memory of fixed size M , which can be
Publikováno v:
ACM Transactions on Knowledge Discovery from Data. 15:1-27
Temporal networks representing a stream of timestamped edges are seemingly ubiquitous in the real world. However, the massive size and continuous nature of these networks make them fundamentally challenging to analyze and leverage for descriptive and