Zobrazeno 1 - 10
of 307
pro vyhledávání: '"Representation theory of the Poincaré group"'
Autor:
Jiro Sekiguchi
Publikováno v:
Representations of Lie Groups, Kyoto, Hiroshima, 1986, K. Okamoto and T. Oshima, eds. (Tokyo: Mathematical Society of Japan, 1988)
The aim of this report is to determine the fundamental group of an arbitrary irreducible semisimple symmetric space $G/H$ when $G$ is a connected semisimple Lie group with trivial center. The fundamental group $\pi_1(G/H)$ is well-known if $G/H$ is R
Autor:
Manouchehr Misaghian
Publikováno v:
British Journal of Mathematics & Computer Science. 6:24-29
Autor:
Ian Chiswell
Publikováno v:
Geometry in Advanced Pure Mathematics
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::f01cbf6c3e4f43a31643f8000fb5bac5
https://doi.org/10.1142/9781786341082_0003
https://doi.org/10.1142/9781786341082_0003
Autor:
Maurice R. Kibler
This chapter deals with some basic elements of number theory and group theory of interest for the four preceding chapters. We limit ourselves to a listing of definitions and classical results as well as examples. The theorems and properties are gener
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::ab32dfa80c86c3bc418c4ed7f0adbfe7
https://doi.org/10.1016/b978-1-78548-235-9.50005-1
https://doi.org/10.1016/b978-1-78548-235-9.50005-1
Publikováno v:
Progress in Mathematics ISBN: 9783319597270
Representation Theory, Number Theory, and Invariant Theory
Representation Theory, Number Theory, and Invariant Theory
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::dd8ddb633fab5773199e64a58da845b6
https://doi.org/10.1007/978-3-319-59728-7
https://doi.org/10.1007/978-3-319-59728-7
Autor:
Peter Woit
Publikováno v:
Quantum Theory, Groups and Representations ISBN: 9783319646107
The quantum theory of a free particle is intimately connected to the representation theory of the group of symmetries of space and time. This is well known for relativistic theories, where it is the representation theory of the Poincare group that is
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::6f240445d8a916969ce8413fa35fef24
https://doi.org/10.1007/978-3-319-64612-1_19
https://doi.org/10.1007/978-3-319-64612-1_19
Autor:
Thomas Church, Benson Farb
Publikováno v:
Advances in Mathematics. 245:250-314
We introduce the idea of *representation stability* (and several variations) for a sequence of representations V_n of groups G_n. A central application of the new viewpoint we introduce here is the importation of representation theory into the study
Autor:
Takehiko Takabayasi
Publikováno v:
Progress of Theoretical Physics Supplement. :339-382
Autor:
Jeffrey Hakim, Joshua M. Lansky
Publikováno v:
Representation Theory of the American Mathematical Society. 16:276-316
We further develop and simplify the general theory of distinguished tame supercuspidal representations of reductive p p -adic groups due to Hakim and Murnaghan, as well as the analogous theory for finite reductive groups due to Lusztig. We apply our
Autor:
Vasyl Fedorchuk, V. I. Fedorchuk
Publikováno v:
Journal of Mathematical Sciences. 181:305-319
The classification of four-dimensional nonconjugate subalgebras of the Lie algebra of the Poincare group P(1, 4) into classes of isomorphic subalgebras is performed. Using this classification, we construct invariant operators (generalized Casimir ope