Zobrazeno 1 - 10
of 539
pro vyhledávání: '"Repovs, D"'
Publikováno v:
Asympt. Anal. (2024), 19 pp
The article is about an elliptic problem defined on a {\it stratified Lie group}. Both sub- and superlinear cases are considered whose solutions are guaranteed to exist in light of the interplay between the nonlinearities and the weak $L^1$ datum. Th
Externí odkaz:
http://arxiv.org/abs/2410.04418
Publikováno v:
Fixed Point Theory 25:2 (2024), 667-676
In this paper, existence of pairs of solutions is obtained for compact potential operators on Hilbert spaces. An application to a second-order boundary value problem is also given as an illustration of our results.
Externí odkaz:
http://arxiv.org/abs/2407.17128
Autor:
Zaicev, M. V., Repovš, D. D.
Publikováno v:
Izv. Math. 88:4 (2024), 639-654
We study identities of Lie superalgebras over a field of characteristic zero. We construct a series of examples of finite-dimensional solvable Lie superalgebras with a non-nilpotent commutator subalgebra for which PI-exponent of codimension growth ex
Externí odkaz:
http://arxiv.org/abs/2407.17122
Publikováno v:
Nonlinear Anal. Model. Control 29:4 (2024), 762-782
The aim of this paper is to study existence results for a singular problem involving the $p$-biharmonic operator and the Hardy potential. More precisely, by combining monotonicity arguments with the variational method, the existence of solutions is e
Externí odkaz:
http://arxiv.org/abs/2406.18982
Autor:
Eddine, N. Chems, Repovš, D. D.
Publikováno v:
Math. Nachr. 297:6 (2024), 2092-2121
We consider a class of noncooperative Schr\"{o}dinger-Kirchhoff type system which involves a general variable exponent elliptic operator with critical growth. Under certain suitable conditions on the nonlinearities, we establish the existence of infi
Externí odkaz:
http://arxiv.org/abs/2402.15139
Publikováno v:
Fract. Calc. Appl. Anal. 27:2 (2024), 725-756
We obtain critical embeddings and the concentration-compactness principle for the anisotropic variable exponent Sobolev spaces. As an application of these results,we confirm the existence of and find infinitely many nontrivial solutions for a class o
Externí odkaz:
http://arxiv.org/abs/2402.15133
Publikováno v:
Electron. J. Differential Equations 2023 (2023), art. 61, 12 pp
This paper is concerned with existence results for the singular $p$-biharmonic problem involving the Hardy potential and the critical Hardy-Sobolev exponent. More precisely, by using variational methods combined with the Mountain pass theorem and the
Externí odkaz:
http://arxiv.org/abs/2309.11465
Publikováno v:
Adv. Nonlinear Anal. 12:1 (2023), art. 20220318, 16 pp
In this paper, we study certain critical Schr\"{o}dinger-Kirchhoff type systems involving the fractional $p$-Laplace operator on a bounded domain. More precisely, using the properties of the associated functional energy on the Nehari manifold sets an
Externí odkaz:
http://arxiv.org/abs/2306.08349
Publikováno v:
Asympt. Anal. 131:1 (2023), 125-143
The objective of this work is to investigate a nonlocal problem involving singular and critical nonlinearities:\begin{equation*}\left\{\begin{array}{ll} ([u]_{s,p}^p)^{\sigma-1}(-\Delta)^s_p u = \frac{\lambda}{u^{\gamma}}+u^{ p_s^{*}-1 }\quad \text{i
Externí odkaz:
http://arxiv.org/abs/2212.09256
Publikováno v:
Bull. Math. Sci. 12:2 (2022), art. 2150008, 13 pp
We prove the existence of at least three weak solutions for the fourth-order problem with indefinite weight involving the Leray-Lions operator with nonstandard growth conditions. The proof of our main result uses variational methods and the critical
Externí odkaz:
http://arxiv.org/abs/2208.09629