Zobrazeno 1 - 10
of 10
pro vyhledávání: '"Repar, Andraž"'
Autor:
Ulčar, Matej, Žagar, Aleš, Armendariz, Carlos S., Repar, Andraž, Pollak, Senja, Purver, Matthew, Robnik-Šikonja, Marko
The current dominance of deep neural networks in natural language processing is based on contextual embeddings such as ELMo, BERT, and BERT derivatives. Most existing work focuses on English; in contrast, we present here the first multilingual empiri
Externí odkaz:
http://arxiv.org/abs/2107.10614
Publikováno v:
Statistical Language and Speech Processing 2019 Proceedings
Keyword extraction is used for summarizing the content of a document and supports efficient document retrieval, and is as such an indispensable part of modern text-based systems. We explore how load centrality, a graph-theoretic measure applied to gr
Externí odkaz:
http://arxiv.org/abs/1907.06458
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
The ability to accurately align concepts between languages can provide significant benefits in many practical applications. In this paper, we extend a machine learning approach using dictionary and cognate-based features with novel cross-lingual embe
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::5f44adcf738f26899881bdb2b207ece0
Autor:
Repar, Andraž, Shumakov, Andrej
This paper presents the implementation of a bilingual term alignment approach developed by Repar et al. (2019) to a dataset of unaligned Estonian and Russian keywords which were manually assigned by journalists to describe the article topic. We start
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::50397792751b4aa503d5dd2ad4a86544
https://doi.org/10.5281/zenodo.4730392
https://doi.org/10.5281/zenodo.4730392
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
In this paper, we look at the issue of reproducibility and replicability in bilingual terminology alignment (BTA). We propose a set of best practices for reproducibility and replicability of NLP papers and analyze several influential BTA papers from
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=od______2659::721a495d91e4284da6f032cb3d671a51
https://zenodo.org/record/3559084
https://zenodo.org/record/3559084
This paper describes TermEnsembler, a bilingual term extraction and alignment system utilizing a novel ensemble learning approach to bilingual term alignment. In the proposed system, the processing starts with monolingual term extraction from a langu
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=od______2659::b64af9f5e30c61780493c74e5878e950
https://zenodo.org/record/3371071
https://zenodo.org/record/3371071
Publikováno v:
Terminology
Autor:
Váradi, Tamás, Nyéki, Bence, Koeva, Svetla, Tadić, Marko, Štefanec, Vanja, Ogrodniczuk, Maciej, Nitoń, Bartłomiej, Pęzik, Piotr, Barbu Mititelu, Verginica, Irimia, Elena, Mitrofan, Maria, Tufi Textcommabelows, Dan, Radovan Garabík, Krek, Simon, Repar, Andraž
Publikováno v:
Radovan Garabík
This article presents the current outcomes of the CURLICAT CEF Telecom project, which aims to collect and deeply annotate a set of large corpora from selected domains. The CURLICAT corpus includes 7 monolingual corpora (Bulgarian, Croatian, Hungarian
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::0f962adfb9c96f2c0b9a6e349c5a64e6
https://aclanthology.org/2022.lrec-1.11
https://aclanthology.org/2022.lrec-1.11