Zobrazeno 1 - 10
of 52
pro vyhledávání: '"Rennemo, Jørgen Vold"'
We study the categorical Torelli theorem for smooth (weighted) hypersurfaces in (weighted) projective spaces via the Hochschild--Serre algebra of its Kuznetsov component. In the first part of the paper, we show that a natural graded subalgebra of the
Externí odkaz:
http://arxiv.org/abs/2408.08266
We construct first examples of Fano varieties with torsion in their third cohomology group. The examples are constructed as double covers of linear sections of rank loci of symmetric matrices, and can be seen as higher-dimensional analogues of the Ar
Externí odkaz:
http://arxiv.org/abs/2309.10793
Publikováno v:
Transactions of the American Mathematical Society, volume 373 (9), 2020, pages 6139-6156
We show that every automorphism of the Hilbert scheme of $n$ points on a weak Fano or general type surface is natural, i.e. induced by an automorphism of the surface, unless the surface is a product of curves and $n=2$. In the exceptional case there
Externí odkaz:
http://arxiv.org/abs/1907.07064
We prove the crepant resolution conjecture for Donaldson-Thomas invariants of hard Lefschetz CY3 orbifolds, formulated by Bryan-Cadman-Young, interpreting the statement as an equality of rational functions. In order to do so, we show that the generat
Externí odkaz:
http://arxiv.org/abs/1810.06581
Autor:
Krug, Andreas, Rennemo, Jørgen Vold
For $X$ a smooth quasi-projective variety and $X^{[n]}$ its associated Hilbert scheme of $n$ points, we study two canonical Fourier--Mukai transforms $D(X)\to D(X^{[n]})$, the one along the structure sheaf and the one along the ideal sheaf of the uni
Externí odkaz:
http://arxiv.org/abs/1808.05931
Autor:
Rennemo, Jørgen Vold
We study the derived category of a complete intersection X of bilinear divisors in the orbifold Sym^2 P(V). Our results are in the spirit of Kuznetsov’s theory of homological projective duality, and we describe a homological projective duality rela
Externí odkaz:
http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.712853
The Grassmannian Gr(2,5) is embedded in $\Bbb{P}^9$ via the Pl\"ucker embedding. The intersection of two general PGL(10)-translates of Gr(2,5) is a Calabi-Yau 3-fold X, and the intersection of the projective duals of the two translates is another Cal
Externí odkaz:
http://arxiv.org/abs/1706.09952
Autor:
Rennemo, Jørgen Vold
We reprove Kuznetsov's "fundamental theorem of homological projective duality" using LG models and variation of GIT stability. This extends the validity of the theorem from smooth varieties to nice subcategories of smooth quotient stacks, and moreove
Externí odkaz:
http://arxiv.org/abs/1705.01437
Publikováno v:
J. Noncommutative Geometry 13 (2019), no. 2, 609-616
We prove a version of the classical 'generic smoothness' theorem with smooth varieties replaced by non-commutative resolutions of singular varieties. This in particular implies a non-commutative version of the Bertini theorem.
Comment: 6 pages.
Comment: 6 pages.
Externí odkaz:
http://arxiv.org/abs/1705.01366
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.