Zobrazeno 1 - 6
of 6
pro vyhledávání: '"Renato J. Gava"'
We introduce a new random walk with unbounded memory obtained as a mixture of the Elephant Random Walk and the Dynamic Random Walk which we call the Dynamic Elephant Random Walk (DERW). As a consequence of this mixture the distribution of the increme
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::a4743efc23a6bd11b3eab4b9d32f5cfc
We consider a non-Markovian discrete-time random walk on $\mathbb{Z}$ with unbounded memory called the elephant random walk (ERW). We prove a strong invariance principle for the ERW. More specifically, we prove that, under a suitable scaling and in t
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::b2eac4c6e49207aa1b8c1b47fdae34ac
http://arxiv.org/abs/1707.06905
http://arxiv.org/abs/1707.06905
Publikováno v:
Journal of mathematical physics 58(5), 053303 (2017). doi:10.1063/1.4983566
We study the so-called elephant random walk (ERW) which is a non-Markovian discrete-time random walk on ℤ with unbounded memory which exhibits a phase transition from a diffusive to superdiffusive behavior. We prove a law of large numbers and a cen
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::e37f93f89c21c95c863d956e96aceed8
https://hdl.handle.net/2128/16387
https://hdl.handle.net/2128/16387
Publikováno v:
Journal of Statistical Mechanics: Theory and Experiment. 2019:083206
We study the minimal random walk introduced by Kumar, Harbola and Lindenberg. It is a random process on $\{0, 1, \ldots \}$ with unbounded memory which exhibits subdiffusive, diffusive and superdiffusive regimes. We prove the law of large numbers for
Publikováno v:
Repositório Institucional da USP (Biblioteca Digital da Produção Intelectual)
Universidade de São Paulo (USP)
instacron:USP
Universidade de São Paulo (USP)
instacron:USP
We study the accessibility percolation model on infinite trees. The model is defined by associating an absolute continuous random variable $X_v$ to each vertex $v$ of the tree. The main question to be considered is the existence or not of an infinite
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::252ca555f2435828cd2350930f3d7b46
http://arxiv.org/abs/1410.3320
http://arxiv.org/abs/1410.3320
Publikováno v:
Journal of Statistical Mechanics: Theory & Experiment; Aug2019, Vol. 2019 Issue 8, p1-1, 1p