Zobrazeno 1 - 10
of 26
pro vyhledávání: '"Renata Bunoiu"'
Publikováno v:
Electronic Journal of Differential Equations, Vol 2021, Iss 59,, Pp 1-22 (2021)
Externí odkaz:
https://doaj.org/article/44f3207e3311432c879e48b93583a45a
Autor:
Renata Bunoiu, Antonio Gaudiello
We consider the steady Bingham flow in a two-dimensional thin Y-like shaped structure, with no-slip boundary conditions and under the action of given external forces. After passage to the limit with respect to a small parameter related to the thickne
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::c32b45e56732dab4119d87416d6d0701
https://hdl.handle.net/11591/463836
https://hdl.handle.net/11591/463836
Autor:
Claudia Timofte, Renata Bunoiu
Publikováno v:
Applicable Analysis. 101:3497-3514
We study the homogenization of a double porosity diffusion problem in a thin highly heterogeneous composite medium formed by two materials separated by an imperfect interface, where the solution an...
Publikováno v:
Journal de Mathématiques Pures et Appliquées
Journal de Mathématiques Pures et Appliquées, Elsevier, 2019, 123, pp.148-166. ⟨10.1016/j.matpur.2018.01.001⟩
Journal de Mathématiques Pures et Appliquées, Elsevier, 2019, 123, pp.148-166. ⟨10.1016/j.matpur.2018.01.001⟩
International audience; We study the steady incompressible flow of a Bingham fluid in a thin T-like shaped domain, under the action of given external forces and with no-slip boundary condition on the whole boundary of the domain. This phenomenon is d
Publikováno v:
Journal of Elliptic and Parabolic Equations
Journal of Elliptic and Parabolic Equations, 2020, 6 (1), pp.377-408. ⟨10.1007/s41808-020-00074-w⟩
Journal of Elliptic and Parabolic Equations, 2020, 6 (1), pp.377-408. ⟨10.1007/s41808-020-00074-w⟩
In the current work, we are performing the asymptotic analysis, beyond the periodic setting, of the Cahn-Hilliard-Navier-Stokes system. Under the general deterministic distribution assumption on the microstructures in the domain, we find the limit mo
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::12560f204cd11847ee8b7bc3f0f63663
https://hal.archives-ouvertes.fr/hal-03264726
https://hal.archives-ouvertes.fr/hal-03264726
Autor:
María Anguiano, Renata Bunoiu
Publikováno v:
Networks and Heterogeneous Media
Networks and Heterogeneous Media, AIMS-American Institute of Mathematical Sciences, 2020, ⟨10.3934/nhm.2020004⟩
Networks and Heterogeneous Media, AIMS-American Institute of Mathematical Sciences, 2020, ⟨10.3934/nhm.2020004⟩
By using dimension reduction and homogenization techniques, we study the steady flow of an incompresible viscoplastic Bingham fluid in a thin porous medium. A main feature of our study is the dependence of the yield stress of the Bingham fluid on the
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::a6fa1d3578754ecf979d167b2d859883
https://hal.archives-ouvertes.fr/hal-02059914
https://hal.archives-ouvertes.fr/hal-02059914
Autor:
Claudia Timofte, Renata Bunoiu
Publikováno v:
Communications in Mathematical Sciences
Communications in Mathematical Sciences, International Press, 2017, ⟨10.4310/CMS.2017.v15.n3.a8⟩
Communications in Mathematical Sciences, International Press, 2017, ⟨10.4310/CMS.2017.v15.n3.a8⟩
International audience; In this paper, we study the homogenization of a thermal diffusion problem in a highly heterogeneous medium formed by two constituents. The main characteristics of the medium are the discontinuity of the thermal conductivity ov
Autor:
Radu Precup, Renata Bunoiu
Publikováno v:
Advances in Nonlinear Analysis
Advances in Nonlinear Analysis, De Gruyter, 2019, 9 (1), pp.292-304. ⟨10.1515/anona-2020-0001⟩
Advances in Nonlinear Analysis, Vol 9, Iss 1, Pp 292-304 (2019)
Advances in Nonlinear Analysis, De Gruyter, 2019, 9 (1), pp.292-304. ⟨10.1515/anona-2020-0001⟩
Advances in Nonlinear Analysis, Vol 9, Iss 1, Pp 292-304 (2019)
We propose a method for the localization of solutions for a class of nonlinear problems arising in the homogenization theory. The method combines concepts and results from the linear theory of PDEs, linear periodic homogenization theory, and nonlinea
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::7e014d6f2802e4b51062bd3aecc1e2dc
https://hal.archives-ouvertes.fr/hal-03264722
https://hal.archives-ouvertes.fr/hal-03264722
Autor:
Renata Bunoiu, Claudia Timofte
Publikováno v:
ZAMM-Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik
ZAMM-Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik, 2019, 99 (2), pp.e201800018. ⟨10.1002/zamm.201800018⟩
Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik
Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik, Wiley-VCH Verlag, 2019, 99 (2), pp.e201800018. ⟨10.1002/zamm.201800018⟩
ZAMM-Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik, 2019, 99 (2), pp.e201800018. ⟨10.1002/zamm.201800018⟩
Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik
Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik, Wiley-VCH Verlag, 2019, 99 (2), pp.e201800018. ⟨10.1002/zamm.201800018⟩
International audience; In this paper, we study the homogenization of a diffusion problem in a highly heterogeneous composite medium formed by two constituents separated by an imperfect interface, where both the temperature and the flux exhibit jumps
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::2d5cea0e750759054a9082291b07966e
https://hal.archives-ouvertes.fr/hal-03264718
https://hal.archives-ouvertes.fr/hal-03264718
Autor:
María Anguiano, Renata Bunoiu
Publikováno v:
Integral Methods in Science and Engineering ISBN: 9783030160760
Integral Methods in Science and Engineering : Analytic Treatment and Numerical Approximations
Integral Methods in Science and Engineering : Analytic Treatment and Numerical Approximations, Birkhäuser, pp.15-24, 2019, 978-3-030-16076-0. ⟨10.1007/978-3-030-16077-7_2⟩
Integral Methods in Science and Engineering, Birkhäuser
Integral Methods in Science and Engineering, Birkhäuser, pp.15-24, 2019
Integral Methods in Science and Engineering : Analytic Treatment and Numerical Approximations
Integral Methods in Science and Engineering : Analytic Treatment and Numerical Approximations, Birkhäuser, pp.15-24, 2019, 978-3-030-16076-0. ⟨10.1007/978-3-030-16077-7_2⟩
Integral Methods in Science and Engineering, Birkhäuser
Integral Methods in Science and Engineering, Birkhäuser, pp.15-24, 2019
International audience; We study the steady nonlinear flow of an incompressible viscoplastic Bingham fluid in a thin periodic domain. A main feature of our study is the dependence of the yield stress of the fluid on the small parameter ε describing
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::0d1e4b5555e3e8b95e8e25d2b5408f56
https://doi.org/10.1007/978-3-030-16077-7_2
https://doi.org/10.1007/978-3-030-16077-7_2