Zobrazeno 1 - 10
of 23
pro vyhledávání: '"Renat Gontsov"'
Autor:
Irina Goryuchkina, Renat Gontsov
Publikováno v:
Journal of Dynamical and Control Systems. 26:149-158
Here, we present some complements to theorems of R. Gerard and Y. Sibuya, on the convergence of multivariate formal power series solutions of nonlinear meromorphic Pfaffian systems. Their most known results concern completely integrable systems with
Autor:
Irina Goryuchkina, Renat Gontsov
Publikováno v:
Математический сборник. 210:3-18
Предлагается достаточное условие сходимости ряда Дюлака, формально удовлетворяющего алгебраическому обыкновенному дифференциальном
The existence, uniqueness and convergence of formal Puiseux series solutions of non-autonomous algebraic differential equations of first order at a nonsingular point of the equation is studied, including the case where the celebrated Painleve theorem
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::1ee20a7e6a2fbcd08a1a0ac834ff85ba
http://arxiv.org/abs/2008.02982
http://arxiv.org/abs/2008.02982
Publikováno v:
e_Buah Biblioteca Digital Universidad de Alcalá
instname
instname
A sufficient condition for the convergence of a generalized formal power series solution to an algebraic q-difference equation is provided. The main result leans on a geometric property related to the semi-group of (complex) power exponents of such a
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::043f1c2145676ccc546b7ec052aec52b
Publikováno v:
Physica D: Nonlinear Phenomena. 424:132947
We study the Schlesinger system of partial differential equations in the case when the unknown matrices of arbitrary size ( p × p ) are triangular and the eigenvalues of each matrix form an arithmetic progression with a rational difference q , the s
Autor:
Irina Goryuchkina, Renat Gontsov
Publikováno v:
manuscripta mathematica. 156:171-185
There is proposed the Maillet–Malgrange type theorem for a generalized power series (having complex power exponents) formally satisfying an algebraic ordinary differential equation. The theorem describes the growth of the series coefficients.
Autor:
Renat Gontsov
Publikováno v:
Matematicheskie Zametki. 102:178-185
Autor:
Renat Gontsov, I. V. V’yugin
Publikováno v:
Arnold Mathematical Journal. 1:445-471
The paper is devoted to solvability of linear differential systems by quadratures, one of the classical problems of differential Galois theory. As known, solvability of a system depends entirely on properties of its differential Galois group. However
Autor:
Renat Gontsov, Irina Goryuchkina
Publikováno v:
Asymptotic Analysis. 93:311-325
We propose a sufficient condition of the convergence of a generalized power series formally satisfying an algebraic (polynomial) ordinary differential equation. The proof is based on the majorant method.
10 pages
10 pages
Autor:
Renat Gontsov, I. V. V’yugin
Publikováno v:
Journal of Geometry and Physics. 61:2419-2435
We study movable singularities of Garnier systems using the connection of the latter with Schlesinger isomonodromic deformations of Fuchsian systems. Questions on the existence of solutions for some inverse monodromy problems are also considered.