Zobrazeno 1 - 6
of 6
pro vyhledávání: '"Renan Maneli Mezabarba"'
Autor:
Renan Maneli Mezabarba
Publikováno v:
Biblioteca Digital de Teses e Dissertações da USPUniversidade de São PauloUSP.
In this work we analyze some selection principles over some classes of hyperspaces. In the first part we consider selective variations of tightness over a class of function spaces whose topologies are determined by bornologies on the space. As result
Autor:
Renan Maneli Mezabarba
Publikováno v:
Biblioteca Digital de Teses e Dissertações da USPUniversidade de São PauloUSP.
Neste trabalho, alguns espaços de funções que surgem naturalmente no contexto da topologia geral são estudados. Por meio da noção de bornologias, problemas de Cp-teoria e Ck-teoria são analisados simultaneamente, como a caracterização de cer
Publikováno v:
Repositório Institucional da USP (Biblioteca Digital da Produção Intelectual)
Universidade de São Paulo (USP)
instacron:USP
Universidade de São Paulo (USP)
instacron:USP
We extend known results of selection principles in C p -theory to the context of spaces of the form C B ( X ) , where B is a bornology on X. Particularly, by using the filter approach of Jordan to C p -theory, we show that γ-productive spaces are pr
Autor:
Renan Maneli Mezabarba
Publikováno v:
Biblioteca Digital de Teses e Dissertações da USP
Universidade de São Paulo (USP)
instacron:USP
Universidade de São Paulo (USP)
instacron:USP
In this work we analyze some selection principles over some classes of hyperspaces. In the first part we consider selective variations of tightness over a class of function spaces whose topologies are determined by bornologies on the space. As result
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::c2d4fdabbeb88c5ff51533ff46b084c8
Autor:
Rodrigo Rey Carvalho
Publikováno v:
Biblioteca Digital de Teses e Dissertações da USP
Universidade de São Paulo (USP)
instacron:USP
Universidade de São Paulo (USP)
instacron:USP
This work develops two distinct topics. We first work with partitions on topological spaces, developing some topics found on [27]. We fixed the proof of the first theorem from the previous paper. We also improved the consistency of a result obtained
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::ceb467b45ec06296dc942157668fe400