Zobrazeno 1 - 10
of 29
pro vyhledávání: '"Rena Bakhshi"'
Publikováno v:
Frontiers in Big Data, Vol 4 (2021)
In this article, we propose expanding the use of scientific repositories such as Zenodo and HEP data, in particular, to better study multiparametric solutions of physical models. The implementation of interactive web-based visualizations enables quic
Externí odkaz:
https://doaj.org/article/ee9dd967b9d649e784b55fcef7580f80
Autor:
Sonja Georgievska, Philip Rutten, Jan Amoraal, Elena Ranguelova, Rena Bakhshi, Ben L. de Vries, Michael Lees, Sander Klous
Publikováno v:
Journal of Big Data, Vol 6, Iss 1, Pp 1-23 (2019)
Abstract We address the problem of detecting highly raised crowd density in situations such as indoor dance events. We propose a new method for estimating crowd density by anonymous, non-participatory, indoor Wi-Fi localization of smart phones. Using
Externí odkaz:
https://doaj.org/article/7d4a8ff6487d4186a6fe00647692909e
Publikováno v:
SoftwareX, Vol 9, Iss , Pp 328-331 (2019)
spot is an open source and free visual data analytics tool for multi-dimensional data-sets. Its web-based interface enables user to do a quick and interactive analysis of complex data. Various operations on data are implemented such as aggregation an
Externí odkaz:
https://doaj.org/article/89ef0156a37043429b684cb4e70893a0
Publikováno v:
Journal of Computational Social Science. SPRINGERNATURE
Journal of Computational Social Science
Journal of Computational Social Science, 5(1), 841-860. Springer
Journal of Computational Social Science
Journal of Computational Social Science, 5(1), 841-860. Springer
Community detection is a well established method for studying the meso scale structure of social networks. Applying a community detection algorithm results in a division of a network into communities that is often used to inspect and reason about com
Autor:
Elena Ranguelova, Christiaan Meijer, Leon Oostrum, Yang Liu, Patrick Bos, Giulia Crocioni, Matthieu Laneuville, Bryan Cardenas Guevara, Rena Bakhshi, Damian Podareanu
Publikováno v:
Journal of Open Source Software. 7:4493
Autor:
Jost von Hardenberg, Philippe Le Sager, Etienne Tourigny, Michiel van Weele, Louis-Philippe Caron, F. Fabiano, Paolo Davini, Eleftheria Exarchou, Gijs van den Oord, Virna Meccia, Susanna Corti, Rena Bakhshi, Mario Rodrigo, Ramon Fuentes Franco, Xavier J. Levine, Torben Koenigk, Yohan Ruprich-Robert, Miguel Castrillo, Uwe Fladrich, Javier García-Serrano, Mario Acosta, Rein Haarsma, Pierre-Antoine Bretonnière, Froila M. Palmeiro, Shiyu Wang, Klaus Wyser, Twan van Noije
A new global high-resolution coupled climate model, EC-Earth3P-HR has been developed by the EC-Earth consortium, with a resolution of approximately 40 km for the atmosphere and 0.25 degree for the ocean, alongside with a standard resolution version o
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::fb343336479edb0cf8817cb24c3b6874
https://www.geosci-model-dev-discuss.net/gmd-2019-350/
https://www.geosci-model-dev-discuss.net/gmd-2019-350/
Publikováno v:
Digital Investigation. 23:22-30
We consider the problem of clustering a large set of images based on similarities of their noise patterns. Such clustering is necessary in forensic cases in which detection of common source of images is required, when the cameras are not physically a
Autor:
Gijs van den Oord, Rena Bakhshi
Publikováno v:
ICCS
The increasing resolution of climate and weather models has resulted in a fast growth of their data production. This calls for a modern and efficient approach to the post-processing of these data. To this end, we have developed a new software package
Autor:
Rena Bakhshi, Philip Rutten, Michael Lees, Sonja Georgievska, Sander Klous, Jan Amoraal, Ben L. de Vries, Elena Ranguelova
Publikováno v:
Journal of Big Data, 6:31. Springer Open
Journal of Big Data, Vol 6, Iss 1, Pp 1-23 (2019)
Journal of Big Data, Vol 6, Iss 1, Pp 1-23 (2019)
We address the problem of detecting highly raised crowd density in situations such as indoor dance events.We propose a new method for estimating crowd density by anonymous, non-participatory, indoor Wi-Fi localization of smart phones. Using a probabi
Autor:
Rena Bakhshi, Leon Gommans, Lourens Veen, Sara Shakeri, Valentina Maccatrozzo, Cees de Laat, Paola Grosso
Publikováno v:
IEEE 15th International Conference on eScience: proceedings : 24-27 September 2019, San Diego, California, 570-577
STARTPAGE=570;ENDPAGE=577;TITLE=IEEE 15th International Conference on eScience
eScience
STARTPAGE=570;ENDPAGE=577;TITLE=IEEE 15th International Conference on eScience
eScience
Recently, Digital Data Marketplaces (DDMs) are gaining wide attention as a sharing platform among different organizations. That is due to the fact that sharing the information and participating in research collaborations play an important role in add
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::5154e6ed022ba90d44f70242651a4701
https://dare.uva.nl/personal/pure/en/publications/modeling-and-matching-digital-data-marketplace-policies(a1ac6d65-0cec-4c0b-854f-ec499f27ecbb).html
https://dare.uva.nl/personal/pure/en/publications/modeling-and-matching-digital-data-marketplace-policies(a1ac6d65-0cec-4c0b-854f-ec499f27ecbb).html