Zobrazeno 1 - 10
of 13
pro vyhledávání: '"René Quilodrán"'
Autor:
Diogo Oliveira e Silva, René Quilodrán
Publikováno v:
Forum of Mathematics, Sigma, Vol 9 (2021)
Let $\mathbb {S}^{d-1}$ denote the unit sphere in Euclidean space $\mathbb {R}^d$, $d\geq 2$, equipped with surface measure $\sigma _{d-1}$. An instance of our main result concerns the regularity of solutions of the convolution equation $$\begin{alig
Externí odkaz:
https://doaj.org/article/b3bbeeeae3204bfdb9bc05ab1263bda6
Publikováno v:
Anal. PDE 13, no. 2 (2020), 477-526
We investigate a class of sharp Fourier extension inequalities on the planar curves $s=|y|^p$, $p>1$. We identify the mechanism responsible for the possible loss of compactness of nonnegative extremizing sequences, and prove that extremizers exist if
Autor:
René Quilodrán, Diogo Oliveira e Silva
Publikováno v:
Forum of Mathematics, Sigma. 9
Let $\mathbb {S}^{d-1}$ denote the unit sphere in Euclidean space $\mathbb {R}^d$ , $d\geq 2$ , equipped with surface measure $\sigma _{d-1}$ . An instance of our main result concerns the regularity of solutions of the convolution equation $$\begin{a
Autor:
René Quilodrán, Diogo Oliveira e Silva
Publikováno v:
Transactions of the American Mathematical Society. 370:6871-6907
For an appropriate class of convex functions $\phi$, we study the Fourier extension operator on the surface $\{(y, |y|^2+\phi(y)):y\in\mathbb{R}^2\}$ equipped with projection measure. For the corresponding extension inequality, we compute optimal con
Autor:
Diego Vigueras Quijada, Álvaro Salgado Quintana, Pablo Farías Nazel, René Quilodrán Ulloa, Manuel Alonso-Dos-Santos
Publikováno v:
Sustainability, Vol 11, Iss 4, p 1079 (2019)
Sustainability
Volume 11
Issue 4
Sustainability
Volume 11
Issue 4
Guideline Daily Amount (GDA) and nutrition tables are the most used front-of-pack (FOP) nutrition labeling schemes in the world
however, they are hard to process considering the nutritional knowledge, effort, and time needed for interpretation.
however, they are hard to process considering the nutritional knowledge, effort, and time needed for interpretation.
Autor:
René Quilodrán, Diogo Oliveira e Silva
Publikováno v:
Journal of Functional Analysis. 280:108825
We prove that constant functions are the unique real-valued maximizers for all $L^2-L^{2n}$ adjoint Fourier restriction inequalities on the unit sphere $\mathbb{S}^{d-1}\subset\mathbb{R}^d$, $d\in\{3,4,5,6,7\}$, where $n\geq 3$ is an integer. The pro
Autor:
René Quilodrán, Diogo Oliveira e Silva
We establish the general form of a geometric comparison principle for $n$-fold convolutions of certain singular measures in $\mathbb{R}^d$ which holds for arbitrary $n$ and $d$. This translates into a pointwise inequality between the convolutions of
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::f3cd0775cce78996e0a5b8068ba00256
http://arxiv.org/abs/1804.10463
http://arxiv.org/abs/1804.10463
Autor:
René Quilodrán
Publikováno v:
Journal d'Analyse Mathématique. 125:37-70
We study the problem of existence of extremizers for the $L^2$ to $L^p$ adjoint Fourier restriction inequalities on the hyperboloid in dimensions 3 and 4, in which cases $p$ is an even integer. We will use the method developed by Foschi to show that
Autor:
René Quilodrán
Publikováno v:
Journal of the London Mathematical Society. 87:223-246
It is known that extremizers for the $L^2$ to $L^6$ adjoint Fourier restriction inequality on the cone in $\mathbb{R}^3$ exist. Here we show that nonnegative extremizing sequences are precompact, after the application of symmetries of the cone. If we
Autor:
René Quilodrán
Publikováno v:
SIAM Journal on Discrete Mathematics. 23:2211-2213
We show that given a collection of $A$ lines in $\mathbb{R}^n$, $n\geq2$, the maximum number of their joints (points incident to at least $n$ lines whose directions form a linearly independent set) is $O(A^{n/(n-1)})$. An analogous result for smooth