Zobrazeno 1 - 3
of 3
pro vyhledávání: '"René Pannekoek"'
Autor:
Lisa Berger, Chris Hall, Rene Pannekoek, Rachel Pries, Shahed Sharif, Alice Silverberg, Douglas Ulmer, Jennifer Park
The authors study the Jacobian $J$ of the smooth projective curve $C$ of genus $r-1$ with affine model $y^r = x^r-1(x + 1)(x + t)$ over the function field $\mathbb F_p(t)$, when $p$ is prime and $r\ge 2$ is an integer prime to $p$. When $q$ is a powe
Autor:
David Holmes, René Pannekoek
Publikováno v:
Bulletin of the London Mathematical Society. 47:565-574
Let r > 0 be an integer. We present a sufficient condition for an abelian variety A over a number field k to have infinitely many quadratic twists of rank at least r, in terms of density properties of rational points on the Kummer variety Km(A^r) of
Autor:
Lisa Berger, Chris Hall, René Pannekoek, Jennifer Park, Rachel Pries, Shahed Sharif, Alice Silverberg, Douglas Ulmer
Publikováno v:
Berger, L; Hall, C; Pannekoek, R; Park, J; Pries, R; Sharif, S; et al.(2017). Explicit arithmetic of Jacobians of generalized Legendre curves over global function fields. UC Irvine: Retrieved from: http://www.escholarship.org/uc/item/9jq2x3fq
We study the Jacobian $J$ of the smooth projective curve $C$ of genus $r-1$ with affine model $y^r = x^{r-1}(x + 1)(x + t)$ over the function field $\mathbb{F}_p(t)$, when $p$ is prime and $r\ge 2$ is an integer prime to $p$. When $q$ is a power of $
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::df4d1f0cdbeacfc4e492c2e1a5bc72cf
http://arxiv.org/abs/1505.00021
http://arxiv.org/abs/1505.00021