Zobrazeno 1 - 10
of 49
pro vyhledávání: '"René Meyer"'
Publikováno v:
Journal of High Energy Physics, Vol 2024, Iss 8, Pp 1-38 (2024)
Abstract We investigate the growth of operator size in the Lindbladian Sachdev-Ye-Kitaev model with q-body interaction terms and linear jump terms at finite dissipation strength. We compute the operator size as well as its distribution numerically at
Externí odkaz:
https://doaj.org/article/0ace0eff79114af88a792005d1ad4ca9
Publikováno v:
Journal of High Energy Physics, Vol 2022, Iss 8, Pp 1-39 (2022)
Abstract For two-dimensional holographic CFTs, we demonstrate the role of Berry phases for relating the non-factorization of the Hilbert space to the presence of wormholes. The wormholes are characterized by a non-exact symplectic form that gives ris
Externí odkaz:
https://doaj.org/article/546869c58b614999b61f0d5e756b1ed1
Publikováno v:
Journal of High Energy Physics, Vol 2022, Iss 5, Pp 1-28 (2022)
Abstract We consider the charged moments in SL(3, ℝ) higher spin holography, as well as in the dual two-dimensional conformal field theory with W 3 symmetry. For the vacuum state and a single entangling interval, we show that the W 3 algebra of the
Externí odkaz:
https://doaj.org/article/c3d4e565da684c97a2a2616b545232bb
Publikováno v:
Journal of High Energy Physics, Vol 2021, Iss 12, Pp 1-31 (2021)
Abstract We test the proposal of [1] for the holographic computation of the charged moments and the resulting symmetry-resolved entanglement entropy in different excited states, as well as for two entangling intervals. Our holographic computations ar
Externí odkaz:
https://doaj.org/article/24356f57725c44fb9d1924b5d59b7163
Publikováno v:
Journal of High Energy Physics, Vol 2021, Iss 7, Pp 1-38 (2021)
Abstract We consider symmetry-resolved entanglement entropy in AdS3/CFT2 coupled to U(1) Chern-Simons theory. We identify the holographic dual of the charged moments in the two-dimensional conformal field theory as a charged Wilson line in the bulk o
Externí odkaz:
https://doaj.org/article/b1eeb5350dab4c6cb276e67e94903307
Autor:
Domenico Di Sante, Johanna Erdmenger, Martin Greiter, Ioannis Matthaiakakis, René Meyer, David Rodríguez Fernández, Ronny Thomale, Erik van Loon, Tim Wehling
Publikováno v:
Nature Communications, Vol 11, Iss 1, Pp 1-7 (2020)
Viscous electron fluids are predicted in strongly correlated systems but remain challenging to realize. Here, the authors predict enhanced effective Coulomb interaction and reduced ratio of the shear viscosity over entropy density in a Kagome metal,
Externí odkaz:
https://doaj.org/article/5c38ce45809348b180aad5987a89e3d8
Publikováno v:
Journal of High Energy Physics, Vol 2019, Iss 1, Pp 1-50 (2019)
Abstract In this paper, we analyze a proposed gravity dual to a SU(N) Bose-Hubbard model, as well as construct a holographic dual of a SU(N) Fermi-Hubbard model from D-branes in string theory. In both cases, the SU(N) is dynamical, i.e. the hopping d
Externí odkaz:
https://doaj.org/article/23500590b6a6466f8ec369e561b41fa2
Publikováno v:
Physical Review Research, Vol 2, Iss 3, p 033193 (2020)
The Dirac mass of a two-dimensional QAH insulator is directly related to the parity anomaly of planar quantum electrodynamics, as shown initially by Niemi and Semenoff [Phys. Rev. Lett. 51, 2077 (1983)PRLTAO0031-900710.1103/PhysRevLett.51.2077]. In t
Externí odkaz:
https://doaj.org/article/cdd5834fa2d549d58fab9daf8de2b586
Autor:
Pablo Basteiro, Felix Dusel, Johanna Erdmenger, Dietmar Herdt, Haye Hinrichsen, René Meyer, Manuel Schrauth
Publikováno v:
Physical Review Letters
We establish how the Breitenlohner-Freedman (BF) bound is realized on tilings of two-dimensional Euclidean Anti-de Sitter space. For the continuum, the BF bound states that on Anti-de Sitter spaces, fluctuation modes remain stable for small negative
Autor:
René Meyer
Publikováno v:
Science MashUp: Green Games ISBN: 9783658405083
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::34b3d604b49e3d9c6a1c20d4ed9f7779
https://doi.org/10.1007/978-3-658-40509-0_9
https://doi.org/10.1007/978-3-658-40509-0_9