Zobrazeno 1 - 7
of 7
pro vyhledávání: '"Remy Magloire Etoua"'
Publikováno v:
Advanced Studies in Theoretical Physics. 14:191-207
Publikováno v:
Applied Mathematical Sciences. 14:393-408
Publikováno v:
Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering ISBN: 9783031063732
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::f3d8e759f91824fa01fe0815bd9f1737
https://doi.org/10.1007/978-3-031-06374-9_14
https://doi.org/10.1007/978-3-031-06374-9_14
Publikováno v:
Applied Mathematical Modelling
Applied Mathematical Modelling, Elsevier, 2021, 99, pp.380-399. ⟨10.1016/j.apm.2021.06.030⟩
Applied Mathematical Modelling, 2021, 99, pp.380-399. ⟨10.1016/j.apm.2021.06.030⟩
Applied Mathematical Modelling, Elsevier, 2021, 99, pp.380-399. ⟨10.1016/j.apm.2021.06.030⟩
Applied Mathematical Modelling, 2021, 99, pp.380-399. ⟨10.1016/j.apm.2021.06.030⟩
Black Sigatoka Disease, also called Black Leaf Streak Disease (BLSD), is caused by the fungus Mycosphaerella fijiensis and is arguably one of the most important pathogens affecting the banana and plantain industries. Theoretical results on its dynami
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::d31f320d173d3fe3ca91b3ced97a2b38
https://hal.inria.fr/hal-03456840
https://hal.inria.fr/hal-03456840
Publikováno v:
Far East Journal of Mathematical Sciences (FJMS). 102:1489-1501
Autor:
Remy Magloire Etoua, Norbert Noutchegueme, Raoul Domingo Ayissi, Hugues Paulin Mbeutcha Tchagna
Publikováno v:
Letters in Mathematical Physics. 105:1289-1299
Recently in 2005, Briani and Rampazzo (Nonlinear Differ Equ Appl 12:71–91, 2005) gave, using results of Crandall and Lions (Ill J Math 31:665–688, 1987), Ishii (Indiana Univ Math J 33: 721–748, 1984, Bull Fac Sci Eng 28: 33–77, 1985) and Ley
Publikováno v:
Journal of Differential Equations. 249:2316-2356
In this paper we study a generalized Gause model with prey harvesting and a generalized Holling response function of type III: p ( x ) = m x 2 a x 2 + b x + 1 . The goal of our study is to give the bifurcation diagram of the model. For this we need t