Zobrazeno 1 - 10
of 18
pro vyhledávání: '"Remi Trichet"'
Publikováno v:
Sensors, Vol 23, Iss 18, p 7804 (2023)
Autonomous navigation relies on the crucial aspect of perceiving the environment to ensure the safe navigation of an autonomous platform, taking into consideration surrounding objects and their potential movements. Consequently, a fundamental require
Externí odkaz:
https://doaj.org/article/296a451ae6fa4d31b1634932e59bab56
Autor:
Remi Trichet, Francois Bremond
Publikováno v:
IEEE Access, Vol 8, Pp 3527-3538 (2020)
The present year witnesses another milestone in Pedestrian detection's journey. It has achieved remarkable progress in the course of the past 15 years, and experts foresee an everyday use of numerous stemming applications within the next 15 years. St
Externí odkaz:
https://doaj.org/article/646746e490d54abe8ae0eed188c456e7
Autor:
Remi Trichet, Francois Bremond
Publikováno v:
IEEE Access, Vol 6, Pp 7719-7727 (2018)
This paper tackles the problem of data selection for training set generation in the context of near real-time pedestrian detection through the introduction of a training methodology: FairTrain. After highlighting the impact of poorly chosen data on d
Externí odkaz:
https://doaj.org/article/3107b844c70e4167a9f0ab34c1a56117
Autor:
Remi Trichet, Noel E. O'Connor
Publikováno v:
AVSS
This paper addresses histogram burstiness, defined as the tendency of histograms to feature peaks out of proportion with their general distribution. After highlighting the impact of this growing issue on computer vision problems and the need to prese
Autor:
Remi Trichet, Francois Bremond
Publikováno v:
IEEE Access
IEEE Access, IEEE, 2019, pp.3527-3538. ⟨10.1109/ACCESS.2019.2891950⟩
IEEE Access, Vol 8, Pp 3527-3538 (2020)
IEEE Access, 2019, pp.3527-3538. ⟨10.1109/ACCESS.2019.2891950⟩
IEEE Access, IEEE, 2019, pp.3527-3538. ⟨10.1109/ACCESS.2019.2891950⟩
IEEE Access, Vol 8, Pp 3527-3538 (2020)
IEEE Access, 2019, pp.3527-3538. ⟨10.1109/ACCESS.2019.2891950⟩
International audience; The present year witnesses another milestone in Pedestrian detection's journey: it has achieved remarkable progresses in the course of the past 15 years, and experts foresee an everyday use of numerous stemming applications wi
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::4298ed0e6f04254f4d0ba01fb3368c20
https://hal.archives-ouvertes.fr/hal-02422526
https://hal.archives-ouvertes.fr/hal-02422526
Autor:
Francois Bremond, Remi Trichet
Publikováno v:
AVSS
This paper focuses on ensemble classifiers for pedestrian detection. Ensemble learning is widely used in this field for context disambiguation or via a cascade-of-rejectors. However, applying the typical, parallel, instance of it remains disappointin
Autor:
Remi Trichet, Francois Bremond
Publikováno v:
WACV
WACV, Mar 2018, Lake Tahoe, United States
WACV, Mar 2018, Lake Tahoe, United States
International audience; This paper introduces a new channel descriptor for pedestrian detection. This type of descriptor usually selects a set of one-valued filters within the enormous set of all possible filters for improved efficiency. The main cla
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::b85426c6b8c8e417b996dadaca3cdc19
https://hal.inria.fr/hal-01849431
https://hal.inria.fr/hal-01849431
Autor:
Remi Trichet, Francois Bremond
Publikováno v:
IEEE Access
IEEE Access, 2017, pp.15. ⟨10.1109/ACCESS.2017.2788058⟩
IEEE Access, Vol 6, Pp 7719-7727 (2018)
IEEE Access, 2017, pp.15. ⟨10.1109/ACCESS.2017.2788058⟩
IEEE Access, Vol 6, Pp 7719-7727 (2018)
International audience; This paper tackles data selection for training set generation in the context of nearreal-time pedestrian detection through the introduction of a training methodology: FairTrain.After highlighting the impact of poorly chosen da
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::10f4821d4f28d7470d7d48c414b7f384
https://inria.hal.science/hal-01566517
https://inria.hal.science/hal-01566517
Autor:
Noel E. O'Connor, Remi Trichet
Publikováno v:
AVSS
This paper presents an ensemble-SVM method that features a data selection mechanism with stochastic and deterministic properties, the use of extreme value theory for classifier calibration, and the introduction of random forest for classifier combina
Autor:
Remi Trichet, Noel E. O'Connor
Publikováno v:
AVSS
Fast computation, efficient memory storage, and performance on par with standard state-of-the-art descriptors make binary descriptors a convenient tool for many computer vision applications. However their development is mostly tailored for static ima