Zobrazeno 1 - 10
of 32
pro vyhledávání: '"Rembado, Gabriele"'
We construct moduli stacks of wild Riemann surfaces in the (pure) untwisted case, for any complex reductive structure group, and we define the corresponding (pure) wild mapping class groups.
Comment: 15 pages: comments welcome!
Comment: 15 pages: comments welcome!
Externí odkaz:
http://arxiv.org/abs/2403.18505
We study isomorphism classes of untwisted irregular singular meromorphic connections on principal bundles over (wild) Riemann surfaces, for any complex reductive structure group $G$ and polar divisor. In particular we compute the stabilisers of suita
Externí odkaz:
http://arxiv.org/abs/2402.03278
Following the completion of the algebraic construction of the Poisson wild character varieties (B.--Yamakawa, 2015) one can consider their natural deformations, generalising both the mapping class group actions on the usual (tame) character varieties
Externí odkaz:
http://arxiv.org/abs/2209.12695
Autor:
Douçot, Jean, Rembado, Gabriele
We will define and study moduli spaces of deformations of irregular classes on Riemann surfaces, which provide an intrinsic viewpoint on the `times' of irregular isomonodromy systems in general. Our aim is to study the deeper generalisation of the G-
Externí odkaz:
http://arxiv.org/abs/2208.02575
Autor:
Rembado, Gabriele
Publikováno v:
Journal of Lie Theory 34 (2024), No. 2, 385--422
We introduce a class of graphs with coloured edges to encode subsystems of the classical root systems, which in particular classify them up to equivalence. We further use the graphs to describe root-kernel intersections, as well as restrictions of ro
Externí odkaz:
http://arxiv.org/abs/2206.03779
We will define and study some generalisations of pure $\mathfrak{g}$-braid groups that occur in the theory of connections on curves, for any complex reductive Lie algebra $\mathfrak{g}$. They make up local pieces of the wild mapping class groups, whi
Externí odkaz:
http://arxiv.org/abs/2204.08188
Publikováno v:
Pacific J. Math. 329 (2024) 1-38
We provide a new general scheme for the geometric quantisation of $\operatorname{Sp}(1)$-symmetric hyper-K\"ahler manifolds, considering Hilbert spaces of holomorphic sections with respect to the complex structures in the hyper-K\"ahler 2-sphere. Und
Externí odkaz:
http://arxiv.org/abs/2111.03584
Publikováno v:
Journal of Symplectic Geometry, Vol. 20, No. 6 (2022), pp. 1215-1253
We consider the geometric quantisation of Chern--Simons theory for closed genus-one surfaces and semisimple complex groups. First we introduce the natural complexified analogue of the Hitchin connection in K\"{a}hler quantisation, with polarisations
Externí odkaz:
http://arxiv.org/abs/2012.15630
Autor:
Felder, Giovanni, Rembado, Gabriele
Publikováno v:
Selecta Mathematica (2023) 29:15
We give a mathematical definition of irregular conformal blocks in the genus-zero WZNW model for any simple Lie algebra, using coinvariants of modules for affine Lie algebras whose parameters match up with those of moduli spaces of irregular meromorp
Externí odkaz:
http://arxiv.org/abs/2012.14793
Autor:
Rembado, Gabriele
On construit de nouvelles connexions quantiques intégrables dans fibrés vectoriels au-dessus d'espaces de modules de surfaces de Riemann et de leurs généralisations sauvages, en utilisant deux approches différentes. Premièrement, on utilise la
Externí odkaz:
http://www.theses.fr/2018SACLS008/document