Zobrazeno 1 - 10
of 81
pro vyhledávání: '"Reinforcement Leaning"'
Publikováno v:
IEEE Access, Vol 11, Pp 88854-88868 (2023)
In this paper, we consider the problem of multi-cell interference coordination by joint beamforming and power control. Recent efforts have explored the use of reinforcement learning (RL) methods to tackle this complex optimization problem. Typically,
Externí odkaz:
https://doaj.org/article/be65f36866574ad2b3aefdcd1147b159
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
Frontiers in Neuroscience, Vol 16 (2022)
This study aimed to investigate whether instrumental reward learning is affected by the cardiac cycle. To this end, we examined the effects of the cardiac cycle (systole or diastole) on the computational processes underlying the participants’ choic
Externí odkaz:
https://doaj.org/article/d7b6767597a3470bbd489a24974195c8
Publikováno v:
Frontiers in Human Neuroscience, Vol 14 (2020)
How do we come to like the things that we do? Each one of us starts from a relatively similar state at birth, yet we end up with vastly different sets of aesthetic preferences. These preferences go on to define us both as individuals and as members o
Externí odkaz:
https://doaj.org/article/8c23421d45544acd875e67018b41b1ac
Autor:
Daniel F. B. Haeufle, Isabell Wochner, David Holzmüller, Danny Driess, Michael Günther, Syn Schmitt
Publikováno v:
Frontiers in Robotics and AI, Vol 7 (2020)
It is hypothesized that the nonlinear muscle characteristic of biomechanical systems simplify control in the sense that the information the nervous system has to process is reduced through off-loading computation to the morphological structure. It ha
Externí odkaz:
https://doaj.org/article/ec893cc9ee984fd1b90126b8532af89f
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Yang, Q.
In traditional reinforcement learning (RL) problems, agents can explore environments to learn optimal policies through trials and errors that are sometimes unsafe. However, unsafe interactions with environments are unacceptable in many safety-critica
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::575871e524a1cdf9e7df8555b66ed88c
http://resolver.tudelft.nl/uuid:ca5a81c2-f895-4638-bce5-1423a5943381
http://resolver.tudelft.nl/uuid:ca5a81c2-f895-4638-bce5-1423a5943381
Autor:
Jarne Ornia, D.
Besides facing the same challenges as single-agent systems, the distributed nature of complex multi-agent systems sparks many questions and problems revolving around the constraints imposed by communication. The idea that multi-agent systems require
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::0eafe0caf91e952df7acef26bb5e532c
https://doi.org/10.4233/uuid:97127a09-d53b-4969-a1e0-ae09b5e92a68
https://doi.org/10.4233/uuid:97127a09-d53b-4969-a1e0-ae09b5e92a68
Publikováno v:
RR-9503, Inria Lille Nord Europe-Laboratoire CRIStAL-Université de Lille. 2023
Interpretability of AI models allows for user safety checks to build trust in these models. In particular, decision trees (DTs) provide a global view on the learned model and clearly outlines the role of the features that are critical to classify a g
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::a4fe0986c0ed751874aa667fcc467838
https://hal.science/hal-04060986/document
https://hal.science/hal-04060986/document