Zobrazeno 1 - 10
of 20
pro vyhledávání: '"Reimann, Johan"'
Autor:
Yang, Zhaoyuan, Tan, Yewteck, Sen, Shiraj, Reimann, Johan, Karigiannis, John, Yousefhussien, Mohammed, Virani, Nurali
Off-road autonomous unmanned ground vehicles (UGVs) are being developed for military and commercial use to deliver crucial supplies in remote locations, help with mapping and surveillance, and to assist war-fighters in contested environments. Due to
Externí odkaz:
http://arxiv.org/abs/2209.11115
Autor:
Reimann, Johan Michael
In recent years, Unmanned Aerial Vehicles (UAVs) have been used extensively in military conflict situations to execute intelligence, surveillance and reconnaissance missions. However, most of the current UAV platforms have limited collaborative capab
Externí odkaz:
http://hdl.handle.net/1853/16151
Autor:
Hanlon, Timothy, Reimann, Johan, Soare, Monica A., Singhal, Anjali, Grande, James, Edgar, Marc, Aggour, Kareem S., Vinciquerra, Joseph
Artificial Intelligence and Machine Learning algorithms have considerable potential to influence the prediction of material properties. Additive materials have a unique property prediction challenge in the form of surface roughness effects on fatigue
Externí odkaz:
http://arxiv.org/abs/1906.05270
Recent work has demonstrated robust mechanisms by which attacks can be orchestrated on machine learning models. In contrast to adversarial examples, backdoor or trojan attacks embed surgically modified samples with targeted labels in the model traini
Externí odkaz:
http://arxiv.org/abs/1902.09972
Collect data for analysis
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::fe361ca1142d7ad6031c996d601b4fcf
Extract biases from large amounts of data using unsupervised machine learning approaches
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::af4e7618c0aeac065064f3f066857f4f
Characterizes Common Latent Biases using Unsupervised Machine Learning
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::99e28b9f742a67185a9f00536d8c177b
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Reyes, Kristofer G., Maruyama, Benji, Aggour, Kareem S., Gupta, Vipul K., Ruscitto, Daniel, Ajdelsztajn, Leonardo, Bian, Xiao, Brosnan, Kristen H., Chennimalai Kumar, Natarajan, Dheeradhada, Voramon, Hanlon, Timothy, Iyer, Naresh, Karandikar, Jaydeep, Li, Peng, Moitra, Abha, Reimann, Johan, Robinson, Dean M., Santamaria-Pang, Alberto, Shen, Chen, Soare, Monica A.
Publikováno v:
MRS Bulletin; Jul2019, Vol. 44 Issue 7, p545-558, 14p
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.