Zobrazeno 1 - 10
of 33
pro vyhledávání: '"Regula Krapf"'
Autor:
Regula Krapf, Luca Pfefferkorn
Publikováno v:
International Journal of Research in Undergraduate Mathematics Education. 8:642-670
Note-taking in tertiary education is a challenging activity which requires listening, processing and recording new information at the same time. However, in lectures at a high presentation rate, students often have to choose between these activities.
Autor:
Regula Krapf, Franzisca Schneider
Publikováno v:
Konzepte und Studien zur Hochschuldidaktik und Lehrerbildung Mathematik ISBN: 9783662648322
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::959ed5dd3d76a866612a39e123403f12
https://doi.org/10.1007/978-3-662-64833-9_8
https://doi.org/10.1007/978-3-662-64833-9_8
Autor:
Regula Krapf
Publikováno v:
Professionsorientierte Fachwissenschaft ISBN: 9783662639474
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::84f04658ba7298dcbd23f7e7d9a68253
https://doi.org/10.1007/978-3-662-63948-1_9
https://doi.org/10.1007/978-3-662-63948-1_9
Autor:
Regula Krapf, Lorenz Halbeisen
Publikováno v:
Gödel's Theorems and Zermelo's Axioms ISBN: 9783030522780
In Example 1.2 we gave a proof of 1 + 1 = 2 in 17 (!) proof steps. At that point you may have asked yourself: If it takes that much effort to prove such a simple statement, how can one ever prove any non-trivial mathematical result using formal proof
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::f2bacf253a4f7515fe0cdfaa3d9637dc
https://doi.org/10.1007/978-3-030-52279-7_2
https://doi.org/10.1007/978-3-030-52279-7_2
Autor:
Lorenz Halbeisen, Regula Krapf
Publikováno v:
Gödel's Theorems and Zermelo's Axioms ISBN: 9783030522780
In 1931, Gӧdel proved his FIRST INCOMPLETENESS THEOREM which states that if PA is consistent, then it is incomplete, i.e.
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::f4d68ce8c723a6a0566e0cd35efc206f
https://doi.org/10.1007/978-3-030-52279-7_10
https://doi.org/10.1007/978-3-030-52279-7_10
Autor:
Regula Krapf
Publikováno v:
Elementare Grundlagen der Hochschulmathematik ISBN: 9783658299521
„So wie eine unendliche Zahl keine Zahl ist, so ist eine irrationale Zahl keine wahre Zahl, weil sie sozusagen unter einem Nebel der Unendlichkeit verborgen ist.“
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::6c1cd239925cd1fbb731c92dc1439275
https://doi.org/10.1007/978-3-658-29953-8_8
https://doi.org/10.1007/978-3-658-29953-8_8
Autor:
Lorenz Halbeisen, Regula Krapf
Publikováno v:
Gödel's Theorems and Zermelo's Axioms ISBN: 9783030522780
Sometimes it is convenient to extend a given signature L by adding new non-logical symbols which have to be properly deffned within the language L or with respect to a given L-theory T.
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::9198c9bf7b978dcff24582770e592994
https://doi.org/10.1007/978-3-030-52279-7_6
https://doi.org/10.1007/978-3-030-52279-7_6
Autor:
Lorenz Halbeisen, Regula Krapf
Publikováno v:
Gödel's Theorems and Zermelo's Axioms ISBN: 9783030522780
In this section, we will show that ZF is suffciently strong to prove that PA is consistent.
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::2067f6c3ba6e92195939188309cfdadc
https://doi.org/10.1007/978-3-030-52279-7_16
https://doi.org/10.1007/978-3-030-52279-7_16
Autor:
Lorenz Halbeisen, Regula Krapf
Publikováno v:
Gödel's Theorems and Zermelo's Axioms ISBN: 9783030522780
The goal of this chapter is to develop the formal language of First-Order Logic from scratch. At the same time, we introduce some terminology of the so-called metalanguage, which is the language we use when we speak about the formal language (e.g., w
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::9f24b9f37452d30ba73488478fd75b37
https://doi.org/10.1007/978-3-030-52279-7_1
https://doi.org/10.1007/978-3-030-52279-7_1
Autor:
Regula Krapf
Publikováno v:
Elementare Grundlagen der Hochschulmathematik ISBN: 9783658299521
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::b706f74886ab0894616438492e768f8b
https://doi.org/10.1007/978-3-658-29953-8_2
https://doi.org/10.1007/978-3-658-29953-8_2