Zobrazeno 1 - 10
of 25
pro vyhledávání: '"Rego, Yuri Santos"'
We combinatorially characterize the number $\mathrm{cc}_2$ of conjugacy classes of involutions in any Coxeter group in terms of higher rank odd graphs. This notion naturally generalizes the concept of odd graphs, used previously to count the number o
Externí odkaz:
http://arxiv.org/abs/2404.03283
We use a method of Bieri, Geoghegan and Kochloukova to calculate the BNSR-invariants for the irrational slope Thompson's group $F_{\tau}$. To do so we establish conditions under which the Sigma invariants coincide with those of a subgroup of finite i
Externí odkaz:
http://arxiv.org/abs/2309.12213
The Reidemeister number $R(\varphi)$ of a group automorphism $\varphi \in \mathrm{Aut}(G)$ encodes the number of orbits of the $\varphi$-twisted conjugation action of $G$ on itself, and the Reidemeister spectrum of $G$ is defined as the set of Reidem
Externí odkaz:
http://arxiv.org/abs/2306.02936
Autor:
Rego, Yuri Santos, Schwer, Petra
In this paper we introduce the galaxy of Coxeter groups -- an infinite dimensional, locally finite, ranked simplicial complex which captures isomorphisms between Coxeter systems. In doing so, we would like to suggest a new framework to study the isom
Externí odkaz:
http://arxiv.org/abs/2211.17038
Let $\mathbb{K}$ be a number field with ring of integers $\mathfrak{O}$ and let $\mathcal{G}$ be a Chevalley group scheme not of type $\mathtt{E}_8$, $\mathtt{F}_4$ or $\mathtt{G}_2$. We use the theory of Tits buildings and a result of T\'oth on Stei
Externí odkaz:
http://arxiv.org/abs/2210.12784
Publikováno v:
Geometriae Dedicata 217, article number 54 (2023)
We investigate fixed-point properties of automorphisms of groups similar to R. Thompson's group $F$. Revisiting work of Gon\c{c}alves-Kochloukova, we deduce a cohomological criterion to detect infinite fixed-point sets in the abelianization, implying
Externí odkaz:
http://arxiv.org/abs/2105.07096
Publikováno v:
Proceedings of the Edinburgh Mathematical Society 67 (2024) 388-430
We prove that there exists an algorithm for determining whether two piecewise-linear spatial graphs are isomorphic. In its most general form, our theorem applies to spatial graphs furnished with vertex colorings, edge colorings and/or edge orientatio
Externí odkaz:
http://arxiv.org/abs/2105.06905
Reidemeister numbers of group automorphisms encode the number of twisted conjugacy classes of groups and might yield information about self-maps of spaces related to the given objects. Here we address a question posed by Gon\c{c}alves and Wong in the
Externí odkaz:
http://arxiv.org/abs/2007.02988
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Rego, Yuri Santos
Publikováno v:
Canad. J. Math., vol. 74, no. 5, 2022
Given a commutative unital ring $R$, we show that the finiteness length of a group $G$ is bounded above by the finiteness length of the Borel subgroup of rank one $\mathbf{B}_2^\circ(R)=\left( \begin{smallmatrix} * & * \\ 0 & * \end{smallmatrix} \rig
Externí odkaz:
http://arxiv.org/abs/1901.06704