Zobrazeno 1 - 10
of 95
pro vyhledávání: '"Regelskis, Vidas"'
Autor:
Regelskis, Vidas
We study Olshanski twisted Yangian based models, known as one-dimensional "soliton non-preserving" open spin chains, by means of algebraic Bethe ansatz. The even case, when the bulk symmetry is $\mathfrak{gl}_{2n}$ and the boundary symmetry is $\math
Externí odkaz:
http://arxiv.org/abs/2302.11842
Autor:
Regelskis, Vidas
We present a supermatrix realisation of q-deformed spinor-spinor and spinor-vector R-matrices. These R-matrices are then used to construct transfer matrices for $U_{q^2}(\mathfrak{so}_{2n+1})$- and $U_{q}(\mathfrak{so}_{2n+2})$-symmetric closed spin
Externí odkaz:
http://arxiv.org/abs/2108.07580
Autor:
Regelskis, Vidas, Vlaar, Bart
Publikováno v:
in Hypergeometry, integrability and Lie theory, 155-203, Contemp. Math., 780, Amer. Math. Soc. (2022)
Lie algebra involutions and their fixed-point subalgebras give rise to symmetric spaces and real forms of complex Lie algebras, and are well-studied in the context of symmetrizable Kac-Moody algebras. In this paper we study a generalization. Namely,
Externí odkaz:
http://arxiv.org/abs/2108.00260
Autor:
Gerrard, Allan, Regelskis, Vidas
We construct exact eigenvectors and eigenvalues for $U_q(\mathfrak{sp}_{2n})$- and $U_q(\mathfrak{so}_{2n})$-symmetric closed spin chains by means of a nested algebraic Bethe ansatz method. We use a fusion procedure to construct higher-dimensional La
Externí odkaz:
http://arxiv.org/abs/1912.11497
Autor:
Gerrard, Allan, Regelskis, Vidas
We present a nested algebraic Bethe ansatz for one-dimensional open so(2n)- and sp(2n)-symmetric spin chains with diagonal boundary conditions and described by the extended twisted Yangian. We use a generalization of the Bethe ansatz introduced by De
Externí odkaz:
http://arxiv.org/abs/1909.12123
Autor:
Regelskis, Vidas, Vlaar, Bart
Let $\mathfrak{g}$ be a finite-dimensional semisimple complex Lie algebra and $\theta$ an involutive automorphism of $\mathfrak{g}$. According to G. Letzter, S. Kolb and M. Balagovi\'c the fixed-point subalgebra $\mathfrak{k} = \mathfrak{g}^\theta$ h
Externí odkaz:
http://arxiv.org/abs/1807.02388
Publikováno v:
J. \'Ec. polytech. Math. 6 (2019), 665-706
Using vertex operators, we build representations of the Yangian of a simply laced Kac-Moody algebra and of its double. As a corollary, we prove the PBW property for simply laced affine Yangians.
Comment: 30 pages
Comment: 30 pages
Externí odkaz:
http://arxiv.org/abs/1804.04081
Autor:
Regelskis, Vidas, Vlaar, Bart
We find the complete set of invertible solutions of the untwisted and twisted reflection equations for the Bazhanov-Jimbo R-matrix of type ${\mathrm A}^{(1)}_{N-1}$. We also show that all invertible solutions can be obtained by an appropriate affiniz
Externí odkaz:
http://arxiv.org/abs/1803.06491
Publikováno v:
Ann. Henri Poincare 20 (2019), 339-392
We present a nested algebraic Bethe ansatz for a one dimensional open spin chain whose boundary quantum spaces are irreducible $\mathfrak{so}_{2n}$- or $\mathfrak{sp}_{2n}$-representations and the monodromy matrix satisfies the defining relations of
Externí odkaz:
http://arxiv.org/abs/1710.08409
We continue the study of finite-dimensional irreducible representations of twisted Yangians associated to symmetric pairs of types B, C and D, with focus on those of types BI, CII and DI. After establishing that, for all twisted Yangians of these typ
Externí odkaz:
http://arxiv.org/abs/1708.00968