Zobrazeno 1 - 10
of 68
pro vyhledávání: '"Refik Keskin"'
Publikováno v:
Mathematica Bohemica, Vol 148, Iss 4, Pp 507-518 (2023)
Let $k\geq2$ and let $(P_n^{(k)})_{n\geq2-k}$ be the $k$-generalized Pell sequence defined by \begin{equation*} P_n^{(k)}=2P_{n-1}^{(k)}+P_{n-2}^{(k)}+\cdots+P_{n-k}^{(k)} \end{equation*}for $n\geq2$ with initial conditions \begin{equation*} P_{-(k-2
Externí odkaz:
https://doaj.org/article/34e113f1b2354c8ab290f8e9584e4041
Autor:
Refik Keskin, Fatih Erduvan
Publikováno v:
Mathematica Bohemica, Vol 146, Iss 1, Pp 55-68 (2021)
The sequence of balancing numbers $(B_n)$ is defined by the recurrence relation $B_n=6B_{n-1}-B_{n-2}$ for $n\geq2$ with initial conditions $B_0=0$ and $B_1=1.$ $B_n$ is called the $n$th balancing number. In this paper, we find all repdigits in the b
Externí odkaz:
https://doaj.org/article/6dffcf2568f141f0ae714f0daeb0bdc7
Autor:
Ümmügülsüm Öğüt, Refi̇k Keski̇n
Publikováno v:
Arab Journal of Mathematical Sciences, Vol 23, Iss 2, Pp 148-156 (2017)
Let P≥3 be an integer and (Vn) denote Lucas sequence of the second kind defined by V0=2,V1=P, and Vn+1=PVn−Vn−1 for n≥1. In this study, when P is odd and w∈{10,14,15,21,30,35,42,70,210}, we solved the equation Vn=wx2∓1. We showed that onl
Externí odkaz:
https://doaj.org/article/a5e0db3404ce4714b1191819451297e2
Autor:
Merve Güney, Refik Keskin
Publikováno v:
Sakarya Üniversitesi Fen Bilimleri Enstitüsü Dergisi, Vol 17, Iss 1 (2013)
Let a,b and n are positive integers. In this paper, we find continued fraction expansion of ;#8730;d when d=a^2 b^2+2b, a^2 b^2+b,a^2±2,a^2±a. We will use continued fraction expansion of ;#8730;d in order to get the fundamental solutions to the equ
Externí odkaz:
https://doaj.org/article/1e631e724a0f46d4b951437fbb4e75fd
Autor:
Refik KESKİN, Selçuk CEBİROĞLU
Publikováno v:
Sakarya Üniversitesi Fen Bilimleri Enstitüsü Dergisi, Vol 6, Iss 3, Pp 118-119 (2002)
Bu çalışmada baz ı yarıgrupların id empotent elemanları karakterize edildi. Ayrıca, D(I) birim aralıkta:ı birim aralığa tanımlı türevlenebilir fonksiyonların yarıgrubu olmak üzere, D(I) yarıgrubunda ild elemanın bileşkesinin bi
Externí odkaz:
https://doaj.org/article/1b30596dfa324708aa534155a62ab6f0
Publikováno v:
Mathematica Bohemica. :1-12
Publikováno v:
Journal of Mathematical Study. 55:84-94
Autor:
ZAFER ŞİAR, REFİK KESKİN
Publikováno v:
Turkish Journal of Mathematics. 46:3083-3094
Publikováno v:
Rendiconti del Circolo Matematico di Palermo Series 2. 71:575-589
In this study, we find all Fibonacci and Lucas numbers which can be written as a difference of two repdigits. It is shown that the largest Fibonacci and Lucas numbers which can be written as a difference of two repdigits are $$\begin{aligned} F_{11}=
Publikováno v:
Indian Journal of Pure and Applied Mathematics. 52:861-868
Let $$(F_{n})$$ be the sequence of Fibonacci numbers defined by $$F_{0}=0,~F_{1}=1$$ , and $$F_{n}=F_{n-1}+F_{n-2}$$ for $$n\ge 2.$$ Let $$2\le m\le n$$ and $$b=2,3,4,5,6,7,8,9.$$ In this study, we show that if $$F_{m}F_{n}$$ is a repdigit in base b