Zobrazeno 1 - 10
of 149
pro vyhledávání: '"Recuperación de nutrientes"'
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Manuel A. Reyes-Prado, Blenda Ramírez-Pereda, Karina Ramírez, Víctor González-Huitrón, Abraham Efraim Rodríguez-Mata, Perla Marysol Uriarte-Aceves, Leonel E. Amabilis-Sosa
Publikováno v:
Revista Internacional de Contaminación Ambiental.
En la presente investigación se evaluaron la recuperación de nutrientes y la remoción de materia orgánica del agua residual agrícola (ARA) mediante un proceso de oxidación avanzada (POA). Para ello, se configuró un sistema UV/H2O2 de 30 W/m2 o
Publikováno v:
Universidad Autónoma de Occidente
Repositorio Institucional UAO
Asociación Española para la Calidad (AEC). (2014). Los Sistemas de Gestión Energética (SGE) [Ebook]. España: Centro Nacional de Información de la Calidad. Recuperado de https://www.aec.es/c/document_library/get_file?uuid=88f8ee2e-2656-4e02-aeaa-d081b96f59bd&groupId=10128 Andersson, E., Arfwidsson, O., Bergstrand, V., & Thollander, P. (2017). A study of the comparability of energy audit program evaluations. Journal of cleaner production, 142, 2133-2139. Basurko, O.C., Gabiña, G., Uriondo, Z., 2013. Energy performance of fishing vessels and potential savings. J. Clean. Prod. 54, 30–40. Bertoldi, P., 2001. Effective Policies and Measures in Energy Efficiency in End-Use Equipment and Industrial processes. In: Proceedings of the 2001 Workshop on Good Practices in Policies and Measurers. López Cardona, J. C. Criterios para la realización de una Auditoría Energética en usuarios Oficiales, Comerciales y Residenciales de Colombia (Doctoral dissertation, Universidad Nacional de Colombia-Sede Manizales). Recuperado de http://bdigital.unal.edu.co/58388/1/1053799930.2017.pdf ClimateWorks Foundation. (2017). Energy Efficiency-ClimateWorks Foundation. Recuperado de https://www.climateworks.org/portfolios/energy-efficiency/ CONSORCIO URECANCOL. (2000). Evaluación expost de las auditorías energéticas en el sector industrial de Colombia [Ebook]. Bogotá: UPME. Retrieved from http://bdigital.upme.gov.co/handle/001/880 Daly, H. E., (1973). Toward a steady-state economy (Vol. 2). San Francisco: WH Freeman. Recuperado de https://is.muni.cz/el/1423/jaro2015/ENS242/um/55677449/3_Daly_2008_Towards_a_Steady_State_Economy.pdf European Commission (EC), 2011. Communication from the Commission. Action Plan for Energy Efficiency: Realising the Potential. COM (2011)545. Recuperado dehttps://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=COM:2011:0109:FIN:EN:PDF Hall, E. (2016). El Manejo de la Energía, más que una Alternativa, una Prioridad para la Gerencia de las Industrias de Hoy. Prisma Tecnológico, 2(1), 28-30. Herrera Ortiz, J. J., y Rengifo Castro, A. (2016). Auditoria energética en el Hotel Intercontinental Cali conforme a los lineamientos de la Norma ISO 50002. Universidad Autónoma de Occidente. Universidad Autónoma de Occidente. Recuperado de http://red.uao.edu.co/handle/10614/8843 International Energy Agency (IEA), 2017. World Energy Outlook 2017. Recuperado de https://www.iea.org/weo2017/ International Energy Agency (IEA), 2018. Energy Efficiency. The global exchange for energy efficiency policies, data and analysis. Recuperado de https://www.iea.org/efficiency2018/ International Organization for Standardization (ISO), 2018. ISO 50001:2018 Energy management systems--Requirements with guidance for use. Recuperado de https://www.iso.org/standard/51297.html International Organization for Standardization (ISO), 2014. ISO 50002:2014, Energy audits — Requirements with guidance for use. Recuperado de https://www.iso.org/standard/60088.html KfW, 2013. Energy Costs and Energy Efficiency in the German SME Sector. https://www.kfw.de/PDF/Download-Center/Konzernthemen/Research/PDFDokumente-Fokus-Volkswirtschaft/Fokus-englische-Dateien/Fokus-Nr.-40-Dezember-2013-_EN.pdf. Krämer, S., & Engell, S. (2018). Resource Efficiency of Processing Plants (1st ed.). Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA. Meadows, D.H., Meadows, D.L., Randers, J., and Behrens, W.W. III (1972) The Limits of Growth, A Report for the Club of Rome’s Project on the Predicament of Mankind, Universe Books, New York.NRDC, TERI, IGSD, 2018. Improving Air Conditioners in India: Cooling India with Less Warming Series – Affordable and Efficient Room Air Conditioners, assets.nrdc.org/sites/default/files/cooling-india-issue-brief-2018_0.pdf. Ramirez, C.A., Patel, M., Blok, K., 2005. The non-energy intensive manufacturing sector. An energy analysis relating to the Netherlands. Energy 30 (5), 749–767. Rosaura P. Castrillón, José P. Monteagudo, Aníbal Borroto, Enrique Ciro Quispe “Línea de Base Energética en la implementación de la norma ISO 50001. Estudios de casos”. El Hombre y la Máquina No. 46, enero-junio de 2015, pp.137-143. Rosaura P. Castrillón, Enrique Ciro Quispe, Adriana J. Hinestroza, Magdalena Urhan, Diego Fandiño, “Metodología para la implementación del sistema de Gestión Integral de la Energía. Fundamentos y casos prácticos.” Programa editorial Universidad Autónoma de Occidente, Santiago de Cali, pp.278. Schumacher, E. (1973) Small is Beautiful: Economics as if People Mattered, Harper & Row, New York. Shipley, A.M., Elliot, R.E., 2001. Energy efficiency programs for small and medium sized industry. In: Proceedings of the 2001 ACEEE summer study on energy efficiency in industry, vol. 1. American Council for an Energy-Efficient Economy, pp. 183–196. Thollander, P., Danestig, M., & Rohdin, P. (2007). Energy policies for increased industrial energy efficiency: Evaluation of a local energy programme for manufacturing SMEs. Energy policy, 35(11), 5774-5783. Van der Hoeven, M., & Houssin, D. (2015). Energy technology perspectives 2015: mobilising innovation to accelerate climate action. International Energy Agency: Paris, France. Wagner, J. R., Mount, E. M., Giles, H. F., Wagner, J. R., Mount, E. M., & Giles, H. F. (2014). Extrusion Process. Extrusion, 3–11. https://doi.org/10.1016/B978-1-4377-3481-2.00001-6
Repositorio Institucional UAO
Asociación Española para la Calidad (AEC). (2014). Los Sistemas de Gestión Energética (SGE) [Ebook]. España: Centro Nacional de Información de la Calidad. Recuperado de https://www.aec.es/c/document_library/get_file?uuid=88f8ee2e-2656-4e02-aeaa-d081b96f59bd&groupId=10128 Andersson, E., Arfwidsson, O., Bergstrand, V., & Thollander, P. (2017). A study of the comparability of energy audit program evaluations. Journal of cleaner production, 142, 2133-2139. Basurko, O.C., Gabiña, G., Uriondo, Z., 2013. Energy performance of fishing vessels and potential savings. J. Clean. Prod. 54, 30–40. Bertoldi, P., 2001. Effective Policies and Measures in Energy Efficiency in End-Use Equipment and Industrial processes. In: Proceedings of the 2001 Workshop on Good Practices in Policies and Measurers. López Cardona, J. C. Criterios para la realización de una Auditoría Energética en usuarios Oficiales, Comerciales y Residenciales de Colombia (Doctoral dissertation, Universidad Nacional de Colombia-Sede Manizales). Recuperado de http://bdigital.unal.edu.co/58388/1/1053799930.2017.pdf ClimateWorks Foundation. (2017). Energy Efficiency-ClimateWorks Foundation. Recuperado de https://www.climateworks.org/portfolios/energy-efficiency/ CONSORCIO URECANCOL. (2000). Evaluación expost de las auditorías energéticas en el sector industrial de Colombia [Ebook]. Bogotá: UPME. Retrieved from http://bdigital.upme.gov.co/handle/001/880 Daly, H. E., (1973). Toward a steady-state economy (Vol. 2). San Francisco: WH Freeman. Recuperado de https://is.muni.cz/el/1423/jaro2015/ENS242/um/55677449/3_Daly_2008_Towards_a_Steady_State_Economy.pdf European Commission (EC), 2011. Communication from the Commission. Action Plan for Energy Efficiency: Realising the Potential. COM (2011)545. Recuperado dehttps://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=COM:2011:0109:FIN:EN:PDF Hall, E. (2016). El Manejo de la Energía, más que una Alternativa, una Prioridad para la Gerencia de las Industrias de Hoy. Prisma Tecnológico, 2(1), 28-30. Herrera Ortiz, J. J., y Rengifo Castro, A. (2016). Auditoria energética en el Hotel Intercontinental Cali conforme a los lineamientos de la Norma ISO 50002. Universidad Autónoma de Occidente. Universidad Autónoma de Occidente. Recuperado de http://red.uao.edu.co/handle/10614/8843 International Energy Agency (IEA), 2017. World Energy Outlook 2017. Recuperado de https://www.iea.org/weo2017/ International Energy Agency (IEA), 2018. Energy Efficiency. The global exchange for energy efficiency policies, data and analysis. Recuperado de https://www.iea.org/efficiency2018/ International Organization for Standardization (ISO), 2018. ISO 50001:2018 Energy management systems--Requirements with guidance for use. Recuperado de https://www.iso.org/standard/51297.html International Organization for Standardization (ISO), 2014. ISO 50002:2014, Energy audits — Requirements with guidance for use. Recuperado de https://www.iso.org/standard/60088.html KfW, 2013. Energy Costs and Energy Efficiency in the German SME Sector. https://www.kfw.de/PDF/Download-Center/Konzernthemen/Research/PDFDokumente-Fokus-Volkswirtschaft/Fokus-englische-Dateien/Fokus-Nr.-40-Dezember-2013-_EN.pdf. Krämer, S., & Engell, S. (2018). Resource Efficiency of Processing Plants (1st ed.). Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA. Meadows, D.H., Meadows, D.L., Randers, J., and Behrens, W.W. III (1972) The Limits of Growth, A Report for the Club of Rome’s Project on the Predicament of Mankind, Universe Books, New York.NRDC, TERI, IGSD, 2018. Improving Air Conditioners in India: Cooling India with Less Warming Series – Affordable and Efficient Room Air Conditioners, assets.nrdc.org/sites/default/files/cooling-india-issue-brief-2018_0.pdf. Ramirez, C.A., Patel, M., Blok, K., 2005. The non-energy intensive manufacturing sector. An energy analysis relating to the Netherlands. Energy 30 (5), 749–767. Rosaura P. Castrillón, José P. Monteagudo, Aníbal Borroto, Enrique Ciro Quispe “Línea de Base Energética en la implementación de la norma ISO 50001. Estudios de casos”. El Hombre y la Máquina No. 46, enero-junio de 2015, pp.137-143. Rosaura P. Castrillón, Enrique Ciro Quispe, Adriana J. Hinestroza, Magdalena Urhan, Diego Fandiño, “Metodología para la implementación del sistema de Gestión Integral de la Energía. Fundamentos y casos prácticos.” Programa editorial Universidad Autónoma de Occidente, Santiago de Cali, pp.278. Schumacher, E. (1973) Small is Beautiful: Economics as if People Mattered, Harper & Row, New York. Shipley, A.M., Elliot, R.E., 2001. Energy efficiency programs for small and medium sized industry. In: Proceedings of the 2001 ACEEE summer study on energy efficiency in industry, vol. 1. American Council for an Energy-Efficient Economy, pp. 183–196. Thollander, P., Danestig, M., & Rohdin, P. (2007). Energy policies for increased industrial energy efficiency: Evaluation of a local energy programme for manufacturing SMEs. Energy policy, 35(11), 5774-5783. Van der Hoeven, M., & Houssin, D. (2015). Energy technology perspectives 2015: mobilising innovation to accelerate climate action. International Energy Agency: Paris, France. Wagner, J. R., Mount, E. M., Giles, H. F., Wagner, J. R., Mount, E. M., & Giles, H. F. (2014). Extrusion Process. Extrusion, 3–11. https://doi.org/10.1016/B978-1-4377-3481-2.00001-6
El agua residual presenta un alto potencial de aprovechamiento, debido a que de ella se derivan recursos altamente aprovechables como el agua, los nutrientes, los lodos y la energía. Es así como en este trabajo de grado se evaluó el potencial de r
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=od________25::00516a57096c4b72e594122244a77ce1
Trabajo de investigación El trabajo de investigación consiste en determinar la capacidad de adsorción de nutrientes (nitrógeno y fósforo) de la biomasa residual de plátano utilizando como medio las aguas residuales domésticas simuladas del mun
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=od______2464::e96cde8e8a92e27482384b93beb91200
https://hdl.handle.net/10983/27782
https://hdl.handle.net/10983/27782
Autor:
Lejarazu-Larrañaga, A., Pompa, A.
IMDEA agua trabaja, en el marco del proyecto INREMEM 2.0, en el desarrollo de nuevas técnicas que permiten el reciclaje de membranas de ósmosis inversa. Este proyecto tiene como finalidad el reciclaje de membranas desechadas por las plantas desalad
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=od______9649::269d196abb0dad0bb67d2f64e5352325
https://issuu.com/r.retema/docs/retema234/112
https://issuu.com/r.retema/docs/retema234/112
Publikováno v:
Universidad Autónoma de Occidente
Repositorio Institucional UAO
Adam, C., Peplinski, B., Michaelis, M., Kley, G. y Simon, F-G. (2009). Thermochemical treatment of sewage sludge ashes for phosphorus recovery. Waste Management, 29, (3). 1122-1128. Recuperado de https://doi.org/10.1016/j.wasman.2008.09.011 Agudelo J. F. y Alvear A. E., (2015). Estudio de la sedimentabilidad de los sólidos presentes en el tratamiento primario del agua residual doméstica de la ciudad de Cali. Universidad del Valle Facultad de Ingeniería. Escuela de Ingeniería de Recursos Naturales y del Ambiente, Programa Académico de Ingeniería Sanitaria y Ambiental Santiago de Cali. Recuperado de: http://bibliotecadigital.univalle.edu.co/bitstream/10893/8971/1/3754-0505719.pdf. 123p. Bradford-Hartke, z.,Lane, J., Lant, P., Leslie, G. (2015). Environmental Benefits and Burdens of Phosphorus Recovery from Municipal Wastewater. Environmental Science & Technology, 49, (14). 8611-8622. Recuperado de https://doi.org/10.1021/es505102v Cortés, C. (2012).Tratamiento de agua residual urbana con salinidad variable (tesis doctoral). Universidad de granada. Granada, España. Recuperado de http://digibug.ugr.es/handle/10481/23760 Chen,X., Kong, H., Wu, D., Wang, X. y Lin, Y.(2009). Phosphate removal and recovery through crystallization of hydroxyapatite using xonotlite as seed cristal. Journal of Environmental Sciences, 21, (5). 575-580. Recuperado de https://doi.org/10.1016/S1001-0742(08)62310-4 Correas, C., Gerardo, M.L., Lord, A.M., Ward, M.B., Andreoli, E. y Barron, A.R. (2017). Nanostructured fusiform hydroxyapatite particles precipitated from aquaculture wastewater. Chemosphere, 168. 1317-1323. Recuperado de https://doi.org/10.1016/j.chemosphere.2016.11.133 Crutchik,D., Sánchez, A. y Garrido, J.M.(2013). Simulation and experimental validation of multiple phosphate precipitates in a saline industrial wastewater. Separation and Purification Technology.Volume 118.Pages 81–88. Recuperado de https://doi.org/10.1016/j.seppur.2013.06.041Cornel, P., Schaum, C. (2009).Phosphorus recovery from wastewater:needs, technologies and costs. Water science & Technology,59 (6).1069-1076. Recuperado de https://doi.org/10.2166/wst.2009.045 Cokgor, E.U., Oktay, S.,Tas,D.O., Zengin, G.E. y Orhon, D. (2009). Influence of pH and temperature on soluble substrate generation with primary sludge fermentation. Bioresource Technology,100, (1).380-386. Recuperado de https://doi.org/10.1016/j.biortech.2008.05.025 Departamento de planta física. (2013). Manual sistema de tratamiento de aguas residuales domesticas-PTAR. Departamento de evaluación, organización y métodos, (2). 1-47. Recuperado de https://campussostenible.org/wp-content/uploads/2017/04/anexo-7-manual-agua-residual.pdf Gómez, R. y Murillo, R. (s.f). Espectroscopia infrarroja, 9-10. Recuperado de http://sistemas.fciencias.unam.mx/~fam/Infrarroja.pdf García, M.V. y Reyes, J. (2006). La hidroxiapatita, su importancia en los tejidos mineralizados y su aplicación biomédica. Revista especializada en ciencias Químico-Biológicas, 9, (2). 90-95. Recuperado de http://www.redalyc.org/pdf/432/43211937005.pdf Gonzále, M.,Saldarriaga, J.C.(2008). Remoción Biológica de materia orgánica, nitrógeno y fósforo en un sistema tipo anaerobio-anóxico-aerobio. Revista EIA,10. 45-53. Recuperado de http://www.scielo.org.co/pdf/eia/n10/n10a05.pdf Hao X., Furumai H., Chen G. (2015). Resource recovery: Efficient approaches to sustainable water and wastewater treatment. Water Research 86 (2015) 83-84. Hernandez, J.C., Prieto, F., Reyes, V.E. y Marmolejo, Y. (2013). Caracterizacion de estruvita sintetizada a partir de los lodos resultantes del tratamiento de un lactosuero ácido mediante un proceso de electrocoagulación. Encuentro de investigación del Área académica de ciencias de la tierra y materiales. 199-209. Recuperado de https://www.uaeh.edu.mx/investigacion/productos/6676/2013_viencuentro3.pdf He, Y., Wang, Y., Song, X.(2016). High-effective denitrification of low C/N wastewater by combined constructed wetland and biofilm-electrode reactor (CW-BER). Bioresource Technology. 203, 245–251. Recuperado de https://doi.org/10.1016/j.biortech.2015.12.060Huang,H.,Zhang, P., Yang, L., Zhang, D., Guo, G.Liu, J. (2017). A pilot-scale investigation on the recovery of zinc and phosphate from phosphating wastewater by step precipitation and crystallization. Chemical Engineering journal, 317. 640-650. Recuperado de http://dx.doi.org/10.1016/j.cej.2017.02.112 ICONTEC, N. (2010). 3903. Procedimiento para el ensayo de coagulación-floculación en un recipiente con agua o método de jarras. IDEAM. 2005. PSO Determinación de alcalinidad por potenciómetria. Recuperado de http://www.ideam.gov.co/documents/14691/38155/Alcalinidad+total+en+agua+por+electrometr%C3%ADa..pdf/dd9a3610-8ff7-49bc-97eb-5306362466df. Instituto de ciencia de materiales de Madrid (s.f). Recuperado de http://www.icmm.csic.es/es/divulgacion/posters/TEC-Microscopia%20Electronica%20de%20Barrido.pdf Illana G. M. (2014). Estudio de la adsorción de fosfatos en aguas de depuradora mediante intercambiadores iónicos. Escola Tècnica Superior. d’Enginyeria Industrial de Barcelona. Projecte de Fi de Carrera. Enginyer Químic. Projecte de Fi de Carrera Enginyer Químic. 81p. Recuperado de: https://upcommons.upc.edu/bitstream/handle/2099.1/22649/Estudio%20de%20la%20adsorci%C3%B3n%20de%20fosfatos%20en%20aguas%20de%20depuradora%20m.pdf Kataki, S., west, H., Clarke, M. y Baruah, D.C. (2016). Phosphorus recovery as struvite: Recent concerns for use of seed, alternative Mg source, nitrogen conservation and fertilizer potencial. Resources, Conservation and Recycling, 107. 142-156. Recuperado de https://doi.org/10.1016/j.resconrec.2015.12.009 Loganathan, P., Vigneswaran, S., Kandasamy, J. y Bolan, N.S. (2013). Removal and Recovery of Phosphate From Water Using Sorption. Environmental Science and Technology, 44 (8). 847-907. Recuperado de https://doi.org/10.1080/10643389.2012.741311 Londoño, M.E., Echavarría, A. y De La Calle, F. (2006). Características cristaloquímicas de la hidroxiapatita sintética tratada a diferentes temperaturas. Revista EIA, 5. 109-118. Recuperado de http://www.scielo.org.co/pdf/eia/n5/n5a10.pdfMarín, N., Escobar, D.M y Ossa, C.P. (2008). Síntesis y caracterización de hidroxiapatita microporosa, comparación con un producto comercial. Rev.Fac.Ing.Univ.Antioquia, 43. 67-76. Recuperado de http://www.scielo.org.co/pdf/rfiua/n43/n43a06.pdf Martínez, A.B. y Esparza, H.E. (2008). Caracterización estructural y morfológica de hidroxiapatita nanoestructurada: estudio comparativo de diferentes métodos de síntesis. Superficies y vacío, 21, (4). 18-21. Recuperado de http://smcsyv.fis.cinvestav.mx/supyvac/21_4/SV2141808.pdf Muñoz,J.F., Ramos, M.(2014). Reactores discontinuos secuenciales una tecnología versátil en el tratamiento de aguas residuales,24,(1).49-66. Recuperado de http://www.scielo.org.co/pdf/cein/v24n1/v24n1a03.pdf Moreno, D.P., Quintero, J. y López, A. (2010). Métodos para identificar, diagnosticar y evaluar el grado de eutrofia. 25-32.Recuperado de http://www.izt.uam.mx/newpage/contactos/anterior/n78ne/eutrofia2.pdf Muhmood, A., Lu, J., Dong, R. y Wu, S. (2018). Formation of struvite from agricultural wastewaters and its reuse on farmlands: Status and hindrances to closing the nutrient loop. Journal of environmental Management, 230. 1-13. Recuperado de https://doi.org/10.1016/j.jenvman.2018.09.030 Moulessehoul, A.; Gallart-Mateu, D.; Harrache, D.; Djaroud, S.; de la Guardia, M.; Kameche, M. (2017). Conductimetric study of struvite crystallization in water as a function of pH. Journal of Crystal Growth. Volume 471. Pages 42-52, ISSN 0022-0248. Recuperado de http://dx.doi.org/10.1016/j.jcrysgro.2017.05.011 Metcalf & Eddy (2014) Wastewater Engineering: Treatment and Resource Recovery, 5th Edition. New York: McGraw-Hill Naik, A. (s.f).Fundamentos del microscopio electrónico y su aplicación en la investigación textil, 44 – 49. Recuperado de https://upcommons.upc.edu/bitstream/handle/2099/6074/Article03.pdf Nguyeon, D., Ngo, H., Guo, W., Nguyen, T., Chang, S., Jang, A. y Yoon, Y. (2016). Can electrocoagulation process be an appropriate technology for phosphorus removal from municipal wastewater?. Science of the total Environment, 563-564. 549-556. Recuperado de https://doi.org/10.1016/j.scitotenv.2016.04.045Oladoja, N.A., Adelagun,R.O.A., Ahmad, A.L. y Ololade, I.A. (2015). Phosphorus recovery from aquaculture wastewater using thermally treated gastropod Shell. Process safety and environmental protection, 98.296-308. Recuperado de https://doi.org/10.1016/j.psep.2015.09.006 Piqué, T.M. y Vázquez, A. (2012). Uso de espectroscopia infrarroja con transformada de Fourier en el estudio de la hidratación del cemento. Scielo, 3. 62-71. Recuperado de http://www.scielo.org.mx/pdf/ccid/v3n2/v3n2a4.pdf Perwitasari, D.S., Muryanto, S., Jamari, J. y Bayuseno, A.P. (2018). Kinetics and morphology analysis of struvite precipitated from aqueous solution under the influence of heavy metals: Cu2+, Pb2+, Zn2+. Journal of Environmental Chemical Engineering, 6, (1). 37-43. Recuperado de https://doi.org/10.1016/j.jece.2017.11.052 Pastor,L.(2008). Estudio de la precipitación y recuperación del fósforo presente en las aguas residuales en forma de estruvita (MgNH4PO4. 6H2O).3-295.Recuperado de https://riunet.upv.es/bitstream/handle/10251/2190/tesisUPV2807.pdf?sequence=1&isAllowed=y Pastor, L., Mangin, D., Barat, R. y Seco,A. (2008). A pilot-scale study of struvite precipitation in a stirred tank reactor: Conditions influencing the process. Bioresource Technology,Volume 99. 6285–6291. doi :10.1016/j.biortech.2007.12.003. Pérez, J.A, Espigares, M. (1995). Aguas residuales composición [en línea]. Recuperado de http://cidta.usal.es/cursos/EDAR/modulos/Edar/unidades/LIBROS/logo/pdf/Aguas_Residuales_composicion.pdf Porras, M. J., Nieto, P., Álvarez, E.C., Fernández, A., Gimeno, M. V. (1985). La composición química de las aguas subterráneas naturales. En Instituto Geológico y Minero de España (Eds). Calidad y contaminación de las aguas subterráneas en España (pp.17-33).Recuperado de http://aguas.igme.es/igme/publica/libro43/pdf/lib43/1_1.pdf Qiu, G., Song, Y., Zeng, P., Xiao, S. y Duan, L. (2011). Phosphorus recovery from fosfomycin pharmaceutical wastewater by wet air oxidation and phosphatecrystallization. Chemosphere, 84. 241-246. Recuperado de https://doi.org/10.1016/j.chemosphere.2011.04.011 Reardon R. Davel J., Baune D., McDonald S., Appleton R., Gillette R. (2013). Wastewater Treatment Plants of the Future: Current Trends Shape Future Plans. Florida Water Resources Journal. January 2013, p8-14. Rodrigues, M.A. y Paris, C. (2013). Avaliação do potencial de uso da hidroxiapatita para fertilização de solos. Quim Nova, 36, (6). 790-792. Recuperado de http://www.scielo.br/pdf/qn/v36n6/08.pdf Serrano, J.L., (s.f). Curso instrumentación y métodos de análisis químico: espectroscopia infrarroja, 10-18. Recuperado de https://www.upct.es/~minaeees/espectroscopia_infrarroja.pdf Song,Y.,Yuan, P., Zheng,B., Peng, J., Yuan, F. y Gao, Y. (2007). Nutrients removal and recovery by crystallization of magnesium ammonium phosphate from synthetic swine wastewater. Chemosphere, 69. 319-324. Recuperado de https://doi.org/10.1016/j.chemosphere.2007.06.001 Shih, Y.J.,Abarca, R.R., G.de luna, M.D.,Huang, Y.H. y Chun lu, M.(2017). Recovery of phosphorus from synthetic wastewaters by struvite crystallization in a fluidized-bed reactor: Effects of pH, phosphate concentration and coexisting ions.Chemosphere, 173. (466-473).Recuperado de https://doi.org/10.1016/j.chemosphere.2017.01.088 Saldarriaga, J.C., Hoyos, D.A., Correa,M.A.(2011). Evaluación de procesos biológicos unitarios en la remoción simultánea de nutrientes para minimizar la eutrofización. Revista EIA, 15. 129-140. Recuperado de http://www.scielo.org.co/pdf/eia/n15/n15a11.pdf Suarez M. C.L. (2011). Tratamiento de aguas residuales municipales en el Valle del Cauca. Universidad del valle. Facultad de Ingeniería, Escuela de Ingenieria de Recursos Naturales y del Ambiente. Maestria en Ingeniería. Santiago de Cali, 2011. 122p. Recuperado de: http://bibliotecadigital.univalle.edu.co/bitstream/10893/10174/1/7720-0445526.pdf Smith,T.W.,Hashemi,J.(2006).Fundamentos de la ciencia e ingeniería de materiales, 4th edición. México: McGraw-HillTarayre, C., De Clercq, L., Charlier, R., Michels, E., Meers, E., Camargo-Valero, M. y Delvigne, F. (2016). Bioresource Technology, 206. 264-274. Recuperado de https://doi.org/10.1016/j.biortech.2016.01.091 Tansel, B., Lunn, G., & Monje, O. (2018). Struvite formation and decomposition characteristics for ammonia and phosphorus recovery: A review of magnesium-ammonia-phosphate interactions. Chemosphere, 194, 504-514. Urbina, J.E., (s.f). Técnicas de caracterización de materiales: Microscopia electrónica, 12-20. Recuperado de http://www.iqcelaya.itc.mx/notasseminario071016.pdf Vasquéz, N., Gandini, A. (2017). Evaluación de la recuperación de nitrógeno y fósforo para la gestión integral del agua residual en campus universitario: caso de estudio universidad autónoma de occidente. Convocatoria interna para financiación de proyectos de investigación científica y tecnológica. 1-25. Vasconcelos, C. (2013). Estudio de la Cristalización y Recuperación de Hidroxiapatita en un reactor de Tanque Agitado. 1-82.Recuperado de https://upcommons.upc.edu/handle/2099.1/20563 Von Sperling, M. 2012. Introducción a la calidad del agua y al tratamiento de aguas residuales. Principios del tratamiento biológico de aguas residuales. Departamento de engenharia sanitária e ambiental da Universidade Federal de Minas Gerais. Volumen 1. Belo a. Edición en español. Traducción Iván Andrés Sánchez Ortiz, Universidad de Nariño. 468p. Van Loosdrecht M., Seah H., Wah Y. L., Cao Y. (2014). The next 100 years. In: Activated sludge – 100 year and counting. IWA Publishing. London. Yuanyao Ye, Huu Hao Ngo, Wenshan Guo, Yiwen Liu, JixiangLi, Yi Liu, Xinbo Zhang, Hui Jia. (2017). Insight into chemical phosphate recovery from municipal wastewater. Science of The Total Environment. Volume 576, 15 January 2017, Pages 159-171. https://doi.org/10.1016/j.scitotenv.2016.10.078. Ye, Y., Ngo, H.H., Guo, W., Liu, Y., Li, J., Liu, Y., Zhang X. y Jia, H. ( 2017). Insight into chemical phosphate recovery from municipal wastewater. Science of the total environment, 576 .159-171. Recuperado de https://doi.org/10.1016/j.scitotenv.2016.10.078Ye, Z., Shen, Y.,Ye, X.,Zhang, Z.,Chen, S y Shi, J. (2014).Phosphorus recovery from wastewater by struvite crystallization: Property of aggregates. Journal of Environmental Sciences, 26. 991-1000. Recuperado de https://doi.org/10.1016/S1001-0742(13)60536-7 Zou, H., Wang, Y.(2016). Phosphorus removal and recovery from domestic wastewater in a novel process of enhanced biological phosphorus removal coupled with crystallization. Bioresource Technology,Volume 211. Pages 87–92. Recuperado de https://doi.org/10.1016/j.biortech.2016.03.073Get rights and content Zheng, X., Zhou, W., Wan, R., Luo, J., Su, Y., Huang, H. y Chen, Y. (2018). Increasing municipal wastewater BNR by using the preferrred carbón source derived from kitchen wastewater to enhance phosphorus uptake and short-cut nitrification-denitrification.Chemical engineering journal, 344. 556-564. Recuperado de https://doi.org/10.1016/j.cej.2018.03.124
Repositorio Institucional UAO
Adam, C., Peplinski, B., Michaelis, M., Kley, G. y Simon, F-G. (2009). Thermochemical treatment of sewage sludge ashes for phosphorus recovery. Waste Management, 29, (3). 1122-1128. Recuperado de https://doi.org/10.1016/j.wasman.2008.09.011 Agudelo J. F. y Alvear A. E., (2015). Estudio de la sedimentabilidad de los sólidos presentes en el tratamiento primario del agua residual doméstica de la ciudad de Cali. Universidad del Valle Facultad de Ingeniería. Escuela de Ingeniería de Recursos Naturales y del Ambiente, Programa Académico de Ingeniería Sanitaria y Ambiental Santiago de Cali. Recuperado de: http://bibliotecadigital.univalle.edu.co/bitstream/10893/8971/1/3754-0505719.pdf. 123p. Bradford-Hartke, z.,Lane, J., Lant, P., Leslie, G. (2015). Environmental Benefits and Burdens of Phosphorus Recovery from Municipal Wastewater. Environmental Science & Technology, 49, (14). 8611-8622. Recuperado de https://doi.org/10.1021/es505102v Cortés, C. (2012).Tratamiento de agua residual urbana con salinidad variable (tesis doctoral). Universidad de granada. Granada, España. Recuperado de http://digibug.ugr.es/handle/10481/23760 Chen,X., Kong, H., Wu, D., Wang, X. y Lin, Y.(2009). Phosphate removal and recovery through crystallization of hydroxyapatite using xonotlite as seed cristal. Journal of Environmental Sciences, 21, (5). 575-580. Recuperado de https://doi.org/10.1016/S1001-0742(08)62310-4 Correas, C., Gerardo, M.L., Lord, A.M., Ward, M.B., Andreoli, E. y Barron, A.R. (2017). Nanostructured fusiform hydroxyapatite particles precipitated from aquaculture wastewater. Chemosphere, 168. 1317-1323. Recuperado de https://doi.org/10.1016/j.chemosphere.2016.11.133 Crutchik,D., Sánchez, A. y Garrido, J.M.(2013). Simulation and experimental validation of multiple phosphate precipitates in a saline industrial wastewater. Separation and Purification Technology.Volume 118.Pages 81–88. Recuperado de https://doi.org/10.1016/j.seppur.2013.06.041Cornel, P., Schaum, C. (2009).Phosphorus recovery from wastewater:needs, technologies and costs. Water science & Technology,59 (6).1069-1076. Recuperado de https://doi.org/10.2166/wst.2009.045 Cokgor, E.U., Oktay, S.,Tas,D.O., Zengin, G.E. y Orhon, D. (2009). Influence of pH and temperature on soluble substrate generation with primary sludge fermentation. Bioresource Technology,100, (1).380-386. Recuperado de https://doi.org/10.1016/j.biortech.2008.05.025 Departamento de planta física. (2013). Manual sistema de tratamiento de aguas residuales domesticas-PTAR. Departamento de evaluación, organización y métodos, (2). 1-47. Recuperado de https://campussostenible.org/wp-content/uploads/2017/04/anexo-7-manual-agua-residual.pdf Gómez, R. y Murillo, R. (s.f). Espectroscopia infrarroja, 9-10. Recuperado de http://sistemas.fciencias.unam.mx/~fam/Infrarroja.pdf García, M.V. y Reyes, J. (2006). La hidroxiapatita, su importancia en los tejidos mineralizados y su aplicación biomédica. Revista especializada en ciencias Químico-Biológicas, 9, (2). 90-95. Recuperado de http://www.redalyc.org/pdf/432/43211937005.pdf Gonzále, M.,Saldarriaga, J.C.(2008). Remoción Biológica de materia orgánica, nitrógeno y fósforo en un sistema tipo anaerobio-anóxico-aerobio. Revista EIA,10. 45-53. Recuperado de http://www.scielo.org.co/pdf/eia/n10/n10a05.pdf Hao X., Furumai H., Chen G. (2015). Resource recovery: Efficient approaches to sustainable water and wastewater treatment. Water Research 86 (2015) 83-84. Hernandez, J.C., Prieto, F., Reyes, V.E. y Marmolejo, Y. (2013). Caracterizacion de estruvita sintetizada a partir de los lodos resultantes del tratamiento de un lactosuero ácido mediante un proceso de electrocoagulación. Encuentro de investigación del Área académica de ciencias de la tierra y materiales. 199-209. Recuperado de https://www.uaeh.edu.mx/investigacion/productos/6676/2013_viencuentro3.pdf He, Y., Wang, Y., Song, X.(2016). High-effective denitrification of low C/N wastewater by combined constructed wetland and biofilm-electrode reactor (CW-BER). Bioresource Technology. 203, 245–251. Recuperado de https://doi.org/10.1016/j.biortech.2015.12.060Huang,H.,Zhang, P., Yang, L., Zhang, D., Guo, G.Liu, J. (2017). A pilot-scale investigation on the recovery of zinc and phosphate from phosphating wastewater by step precipitation and crystallization. Chemical Engineering journal, 317. 640-650. Recuperado de http://dx.doi.org/10.1016/j.cej.2017.02.112 ICONTEC, N. (2010). 3903. Procedimiento para el ensayo de coagulación-floculación en un recipiente con agua o método de jarras. IDEAM. 2005. PSO Determinación de alcalinidad por potenciómetria. Recuperado de http://www.ideam.gov.co/documents/14691/38155/Alcalinidad+total+en+agua+por+electrometr%C3%ADa..pdf/dd9a3610-8ff7-49bc-97eb-5306362466df. Instituto de ciencia de materiales de Madrid (s.f). Recuperado de http://www.icmm.csic.es/es/divulgacion/posters/TEC-Microscopia%20Electronica%20de%20Barrido.pdf Illana G. M. (2014). Estudio de la adsorción de fosfatos en aguas de depuradora mediante intercambiadores iónicos. Escola Tècnica Superior. d’Enginyeria Industrial de Barcelona. Projecte de Fi de Carrera. Enginyer Químic. Projecte de Fi de Carrera Enginyer Químic. 81p. Recuperado de: https://upcommons.upc.edu/bitstream/handle/2099.1/22649/Estudio%20de%20la%20adsorci%C3%B3n%20de%20fosfatos%20en%20aguas%20de%20depuradora%20m.pdf Kataki, S., west, H., Clarke, M. y Baruah, D.C. (2016). Phosphorus recovery as struvite: Recent concerns for use of seed, alternative Mg source, nitrogen conservation and fertilizer potencial. Resources, Conservation and Recycling, 107. 142-156. Recuperado de https://doi.org/10.1016/j.resconrec.2015.12.009 Loganathan, P., Vigneswaran, S., Kandasamy, J. y Bolan, N.S. (2013). Removal and Recovery of Phosphate From Water Using Sorption. Environmental Science and Technology, 44 (8). 847-907. Recuperado de https://doi.org/10.1080/10643389.2012.741311 Londoño, M.E., Echavarría, A. y De La Calle, F. (2006). Características cristaloquímicas de la hidroxiapatita sintética tratada a diferentes temperaturas. Revista EIA, 5. 109-118. Recuperado de http://www.scielo.org.co/pdf/eia/n5/n5a10.pdfMarín, N., Escobar, D.M y Ossa, C.P. (2008). Síntesis y caracterización de hidroxiapatita microporosa, comparación con un producto comercial. Rev.Fac.Ing.Univ.Antioquia, 43. 67-76. Recuperado de http://www.scielo.org.co/pdf/rfiua/n43/n43a06.pdf Martínez, A.B. y Esparza, H.E. (2008). Caracterización estructural y morfológica de hidroxiapatita nanoestructurada: estudio comparativo de diferentes métodos de síntesis. Superficies y vacío, 21, (4). 18-21. Recuperado de http://smcsyv.fis.cinvestav.mx/supyvac/21_4/SV2141808.pdf Muñoz,J.F., Ramos, M.(2014). Reactores discontinuos secuenciales una tecnología versátil en el tratamiento de aguas residuales,24,(1).49-66. Recuperado de http://www.scielo.org.co/pdf/cein/v24n1/v24n1a03.pdf Moreno, D.P., Quintero, J. y López, A. (2010). Métodos para identificar, diagnosticar y evaluar el grado de eutrofia. 25-32.Recuperado de http://www.izt.uam.mx/newpage/contactos/anterior/n78ne/eutrofia2.pdf Muhmood, A., Lu, J., Dong, R. y Wu, S. (2018). Formation of struvite from agricultural wastewaters and its reuse on farmlands: Status and hindrances to closing the nutrient loop. Journal of environmental Management, 230. 1-13. Recuperado de https://doi.org/10.1016/j.jenvman.2018.09.030 Moulessehoul, A.; Gallart-Mateu, D.; Harrache, D.; Djaroud, S.; de la Guardia, M.; Kameche, M. (2017). Conductimetric study of struvite crystallization in water as a function of pH. Journal of Crystal Growth. Volume 471. Pages 42-52, ISSN 0022-0248. Recuperado de http://dx.doi.org/10.1016/j.jcrysgro.2017.05.011 Metcalf & Eddy (2014) Wastewater Engineering: Treatment and Resource Recovery, 5th Edition. New York: McGraw-Hill Naik, A. (s.f).Fundamentos del microscopio electrónico y su aplicación en la investigación textil, 44 – 49. Recuperado de https://upcommons.upc.edu/bitstream/handle/2099/6074/Article03.pdf Nguyeon, D., Ngo, H., Guo, W., Nguyen, T., Chang, S., Jang, A. y Yoon, Y. (2016). Can electrocoagulation process be an appropriate technology for phosphorus removal from municipal wastewater?. Science of the total Environment, 563-564. 549-556. Recuperado de https://doi.org/10.1016/j.scitotenv.2016.04.045Oladoja, N.A., Adelagun,R.O.A., Ahmad, A.L. y Ololade, I.A. (2015). Phosphorus recovery from aquaculture wastewater using thermally treated gastropod Shell. Process safety and environmental protection, 98.296-308. Recuperado de https://doi.org/10.1016/j.psep.2015.09.006 Piqué, T.M. y Vázquez, A. (2012). Uso de espectroscopia infrarroja con transformada de Fourier en el estudio de la hidratación del cemento. Scielo, 3. 62-71. Recuperado de http://www.scielo.org.mx/pdf/ccid/v3n2/v3n2a4.pdf Perwitasari, D.S., Muryanto, S., Jamari, J. y Bayuseno, A.P. (2018). Kinetics and morphology analysis of struvite precipitated from aqueous solution under the influence of heavy metals: Cu2+, Pb2+, Zn2+. Journal of Environmental Chemical Engineering, 6, (1). 37-43. Recuperado de https://doi.org/10.1016/j.jece.2017.11.052 Pastor,L.(2008). Estudio de la precipitación y recuperación del fósforo presente en las aguas residuales en forma de estruvita (MgNH4PO4. 6H2O).3-295.Recuperado de https://riunet.upv.es/bitstream/handle/10251/2190/tesisUPV2807.pdf?sequence=1&isAllowed=y Pastor, L., Mangin, D., Barat, R. y Seco,A. (2008). A pilot-scale study of struvite precipitation in a stirred tank reactor: Conditions influencing the process. Bioresource Technology,Volume 99. 6285–6291. doi :10.1016/j.biortech.2007.12.003. Pérez, J.A, Espigares, M. (1995). Aguas residuales composición [en línea]. Recuperado de http://cidta.usal.es/cursos/EDAR/modulos/Edar/unidades/LIBROS/logo/pdf/Aguas_Residuales_composicion.pdf Porras, M. J., Nieto, P., Álvarez, E.C., Fernández, A., Gimeno, M. V. (1985). La composición química de las aguas subterráneas naturales. En Instituto Geológico y Minero de España (Eds). Calidad y contaminación de las aguas subterráneas en España (pp.17-33).Recuperado de http://aguas.igme.es/igme/publica/libro43/pdf/lib43/1_1.pdf Qiu, G., Song, Y., Zeng, P., Xiao, S. y Duan, L. (2011). Phosphorus recovery from fosfomycin pharmaceutical wastewater by wet air oxidation and phosphatecrystallization. Chemosphere, 84. 241-246. Recuperado de https://doi.org/10.1016/j.chemosphere.2011.04.011 Reardon R. Davel J., Baune D., McDonald S., Appleton R., Gillette R. (2013). Wastewater Treatment Plants of the Future: Current Trends Shape Future Plans. Florida Water Resources Journal. January 2013, p8-14. Rodrigues, M.A. y Paris, C. (2013). Avaliação do potencial de uso da hidroxiapatita para fertilização de solos. Quim Nova, 36, (6). 790-792. Recuperado de http://www.scielo.br/pdf/qn/v36n6/08.pdf Serrano, J.L., (s.f). Curso instrumentación y métodos de análisis químico: espectroscopia infrarroja, 10-18. Recuperado de https://www.upct.es/~minaeees/espectroscopia_infrarroja.pdf Song,Y.,Yuan, P., Zheng,B., Peng, J., Yuan, F. y Gao, Y. (2007). Nutrients removal and recovery by crystallization of magnesium ammonium phosphate from synthetic swine wastewater. Chemosphere, 69. 319-324. Recuperado de https://doi.org/10.1016/j.chemosphere.2007.06.001 Shih, Y.J.,Abarca, R.R., G.de luna, M.D.,Huang, Y.H. y Chun lu, M.(2017). Recovery of phosphorus from synthetic wastewaters by struvite crystallization in a fluidized-bed reactor: Effects of pH, phosphate concentration and coexisting ions.Chemosphere, 173. (466-473).Recuperado de https://doi.org/10.1016/j.chemosphere.2017.01.088 Saldarriaga, J.C., Hoyos, D.A., Correa,M.A.(2011). Evaluación de procesos biológicos unitarios en la remoción simultánea de nutrientes para minimizar la eutrofización. Revista EIA, 15. 129-140. Recuperado de http://www.scielo.org.co/pdf/eia/n15/n15a11.pdf Suarez M. C.L. (2011). Tratamiento de aguas residuales municipales en el Valle del Cauca. Universidad del valle. Facultad de Ingeniería, Escuela de Ingenieria de Recursos Naturales y del Ambiente. Maestria en Ingeniería. Santiago de Cali, 2011. 122p. Recuperado de: http://bibliotecadigital.univalle.edu.co/bitstream/10893/10174/1/7720-0445526.pdf Smith,T.W.,Hashemi,J.(2006).Fundamentos de la ciencia e ingeniería de materiales, 4th edición. México: McGraw-HillTarayre, C., De Clercq, L., Charlier, R., Michels, E., Meers, E., Camargo-Valero, M. y Delvigne, F. (2016). Bioresource Technology, 206. 264-274. Recuperado de https://doi.org/10.1016/j.biortech.2016.01.091 Tansel, B., Lunn, G., & Monje, O. (2018). Struvite formation and decomposition characteristics for ammonia and phosphorus recovery: A review of magnesium-ammonia-phosphate interactions. Chemosphere, 194, 504-514. Urbina, J.E., (s.f). Técnicas de caracterización de materiales: Microscopia electrónica, 12-20. Recuperado de http://www.iqcelaya.itc.mx/notasseminario071016.pdf Vasquéz, N., Gandini, A. (2017). Evaluación de la recuperación de nitrógeno y fósforo para la gestión integral del agua residual en campus universitario: caso de estudio universidad autónoma de occidente. Convocatoria interna para financiación de proyectos de investigación científica y tecnológica. 1-25. Vasconcelos, C. (2013). Estudio de la Cristalización y Recuperación de Hidroxiapatita en un reactor de Tanque Agitado. 1-82.Recuperado de https://upcommons.upc.edu/handle/2099.1/20563 Von Sperling, M. 2012. Introducción a la calidad del agua y al tratamiento de aguas residuales. Principios del tratamiento biológico de aguas residuales. Departamento de engenharia sanitária e ambiental da Universidade Federal de Minas Gerais. Volumen 1. Belo a. Edición en español. Traducción Iván Andrés Sánchez Ortiz, Universidad de Nariño. 468p. Van Loosdrecht M., Seah H., Wah Y. L., Cao Y. (2014). The next 100 years. In: Activated sludge – 100 year and counting. IWA Publishing. London. Yuanyao Ye, Huu Hao Ngo, Wenshan Guo, Yiwen Liu, JixiangLi, Yi Liu, Xinbo Zhang, Hui Jia. (2017). Insight into chemical phosphate recovery from municipal wastewater. Science of The Total Environment. Volume 576, 15 January 2017, Pages 159-171. https://doi.org/10.1016/j.scitotenv.2016.10.078. Ye, Y., Ngo, H.H., Guo, W., Liu, Y., Li, J., Liu, Y., Zhang X. y Jia, H. ( 2017). Insight into chemical phosphate recovery from municipal wastewater. Science of the total environment, 576 .159-171. Recuperado de https://doi.org/10.1016/j.scitotenv.2016.10.078Ye, Z., Shen, Y.,Ye, X.,Zhang, Z.,Chen, S y Shi, J. (2014).Phosphorus recovery from wastewater by struvite crystallization: Property of aggregates. Journal of Environmental Sciences, 26. 991-1000. Recuperado de https://doi.org/10.1016/S1001-0742(13)60536-7 Zou, H., Wang, Y.(2016). Phosphorus removal and recovery from domestic wastewater in a novel process of enhanced biological phosphorus removal coupled with crystallization. Bioresource Technology,Volume 211. Pages 87–92. Recuperado de https://doi.org/10.1016/j.biortech.2016.03.073Get rights and content Zheng, X., Zhou, W., Wan, R., Luo, J., Su, Y., Huang, H. y Chen, Y. (2018). Increasing municipal wastewater BNR by using the preferrred carbón source derived from kitchen wastewater to enhance phosphorus uptake and short-cut nitrification-denitrification.Chemical engineering journal, 344. 556-564. Recuperado de https://doi.org/10.1016/j.cej.2018.03.124
La recuperación de nutrientes por medio de la precipitación química a partir de agua residual, es un campo de investigación en el cual se debe indagar con el fin de desarrollar procesos más eficientes que permitan el aprovechamiento de compuesto
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=od________25::c106fb971b05e058d54bbda01daf001b
Autor:
Francisco Corona Encinas
Publikováno v:
UVaDOC: Repositorio Documental de la Universidad de Valladolid
Universidad de Valladolid
UVaDOC. Repositorio Documental de la Universidad de Valladolid
instname
Universidad de Valladolid
UVaDOC. Repositorio Documental de la Universidad de Valladolid
instname
Habida cuenta de las ventajas potenciales que puede presentar la precipitación de nitrógeno y fósforo procedente de residuos agroganaderos en forma de estruvita, en esta Tesis se ha abordado el estudio del proceso de recuperación de los nutriente
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::fca0fc3740f423fdbcd2154c140079d0
http://uvadoc.uva.es/handle/10324/45332
http://uvadoc.uva.es/handle/10324/45332
Publikováno v:
BULERIA. Repositorio Institucional de la Universidad de León
instname
instname
El desarrollo de celdas microbianas para la recuperación de nutrientes es un paso crucial para la implementación de esta tecnología en el tratamiento de residuos orgánicos líquidos. En el presente trabajo se describen los resultados preliminares
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::82e1ef07a8175b9f1de58ca34ed16d20
http://hdl.handle.net/10612/7289
http://hdl.handle.net/10612/7289
Autor:
Benito Martín, Cristina
Publikováno v:
UVaDOC. Repositorio Documental de la Universidad de Valladolid
instname
instname
Este trabajo presenta un estudio experimental y teórico del proceso de obtención de biofertilizantes líquidos a partir de material bioestabilizado. La parte experimental a escala laboratorio aborda el análisis de la influencia de la temperatura d
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::48890edf124324b4af8e583aa470c095
http://uvadoc.uva.es/handle/10324/31481
http://uvadoc.uva.es/handle/10324/31481