Zobrazeno 1 - 10
of 19
pro vyhledávání: '"Rebolledo, Marusia"'
Autor:
Arias-de-Reyna, Sara, Armana, Cécile, Karemaker, Valentijn, Rebolledo, Marusia, Thomas, Lara, Vila, Núria
Given a prime number l greater than or equal to 5, we construct an infinite family of three-dimensional abelian varieties over Q such that, for any A/Q in the family, the Galois representation \rho_{A, l}: Gal_Q -> GSp(6, l) attached to the l-torsion
Externí odkaz:
http://arxiv.org/abs/1507.05913
Autor:
Rebolledo, Marusia
Nous étudions ici le groupe libre engendré par les classes d'isomorphisme de courbes elliptiques supersingulières en caractéristique $p$ appelé module supersingulier. Nous le comparons à d'autres modules de Hecke : l'homologie de la courbe modu
Externí odkaz:
http://tel.archives-ouvertes.fr/tel-00008022
http://tel.archives-ouvertes.fr/docs/00/04/75/68/PDF/tel-00008022.pdf
http://tel.archives-ouvertes.fr/docs/00/04/75/68/PDF/tel-00008022.pdf
Autor:
Arias-de-Reyna, Sara, Armana, Cécile, Karemaker, Valentijn, Rebolledo, Marusia, Thomas, Lara, Vila, Núria
In this paper we generalize results of P. Le Duff to genus n hyperelliptic curves. More precisely, let C/Q be a hyperelliptic genus n curve and let J(C) be the associated Jacobian variety. Assume that there exists a prime p such that J(C) has semista
Externí odkaz:
http://arxiv.org/abs/1407.5802
Modular curves like X_0(N) and X_1(N) appear very frequently in arithmetic geometry. While their complex points are obtained as a quotient of the upper half plane by some subgroups of SL_2(Z), they allow for a more arithmetic description as a solutio
Externí odkaz:
http://arxiv.org/abs/1402.3498
Autor:
Rebolledo, Marusia
Publikováno v:
In Journal of Number Theory 2006 121(2):234-264
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Arias-De-Reyna, Sara, Armana, Cécile, Karemaker, Valentijn, Rebolledo, Marusia, Thomas, Lara, Vila, Núria, Sub Fundamental Mathematics, Fundamental mathematics
Publikováno v:
Acta Arithmetica
Acta Arithmetica, 2016, 174 (4), pp.101-132. ⟨10.4064/aa8250-4-2016⟩
idUS. Depósito de Investigación de la Universidad de Sevilla
instname
Acta Arithmetica, 174(4), 339. Instytut Matematyczny
Acta Arithmetica, 174, 339-366. Warszawa, Poland: Seminarjum Matematyczne Uniwersytetu (2016).
Acta Arithmetica, Instytut Matematyczny PAN, 2016, 174 (4), pp.339-366. ⟨10.4064/aa8250-4-2016⟩
Acta Arithmetica, 2016, 174 (4), pp.101-132. ⟨10.4064/aa8250-4-2016⟩
idUS. Depósito de Investigación de la Universidad de Sevilla
instname
Acta Arithmetica, 174(4), 339. Instytut Matematyczny
Acta Arithmetica, 174, 339-366. Warszawa, Poland: Seminarjum Matematyczne Uniwersytetu (2016).
Acta Arithmetica, Instytut Matematyczny PAN, 2016, 174 (4), pp.339-366. ⟨10.4064/aa8250-4-2016⟩
Given a prime number l greater than or equal to 5, we construct an infinite family of three-dimensional abelian varieties over Q such that, for any A/Q in the family, the Galois representation ��_{A, l}: Gal_Q -> GSp(6, l) attached to the l-torsi
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::e295362483afbfe9daf22f97d7a7101f
https://hal.science/hal-01287556/file/Acta-Wine.pdf
https://hal.science/hal-01287556/file/Acta-Wine.pdf
Autor:
Arias-de-Reyna, Sara, Armana, Cécile, Karemaker, Valentijn, Rebolledo, Marusia, Thomas, Lara, Vila, Núria, Bertin, Marie José, Bucur, Alina, Feigon, Brooke, Schneps, Leila
In this paper we generalize results of P. Le Duff to genus n hyperelliptic curves. More precisely, let C∕ ℚ be a hyperelliptic genus n curve, let J(C) be the associated Jacobian variety, and let ρ̄ℓ: Gℚ→ GSp (J(C) [ ℓ] ) be the Galois r
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=od_______101::4768d33ef82fd574c9865375d28ec7e4
https://dspace.library.uu.nl/handle/1874/415014
https://dspace.library.uu.nl/handle/1874/415014
Autor:
Arias-de-Reyna, Sara, Armana, Cécile, Karemaker, Valentijn, Rebolledo, Marusia, Thomas, Lara, Vila, Núria, Bertin, Marie José, Bucur, Alina, Feigon, Brooke, Schneps, Leila, Sub Fundamental Mathematics, Fundamental mathematics
Publikováno v:
Women in Numbers Europe; Research Directions in Number Theory
Women in Numbers Europe; Research Directions in Number Theory, 2, Springer International Publishing, 2015, Association for Women in Mathematics Series, 978-3-319-17987-2. ⟨10.1007/978-3-319-17987-2_8⟩
Women in Numbers Europe; Research Directions in Number Theory, Springer International Publishing, 2015, Association for Women in Mathematics Series, 978-3-319-17987-2. ⟨10.1007/978-3-319-17987-2_8⟩
In M. J., Bertin, A., Bucur, B., Feigon, & L., Schneps (Eds.), Women in Numbers Europe Research Directions in Number Theory (pp. 191-205). Springer (2015).
Women in Numbers Europe, 2(1), 191. Springer Cham
Association for Women in Mathematics Series ISBN: 9783319179865
idUS. Depósito de Investigación de la Universidad de Sevilla
instname
Women in Numbers Europe; Research Directions in Number Theory, 2, Springer International Publishing, 2015, Association for Women in Mathematics Series, 978-3-319-17987-2. ⟨10.1007/978-3-319-17987-2_8⟩
Women in Numbers Europe; Research Directions in Number Theory, Springer International Publishing, 2015, Association for Women in Mathematics Series, 978-3-319-17987-2. ⟨10.1007/978-3-319-17987-2_8⟩
In M. J., Bertin, A., Bucur, B., Feigon, & L., Schneps (Eds.), Women in Numbers Europe Research Directions in Number Theory (pp. 191-205). Springer (2015).
Women in Numbers Europe, 2(1), 191. Springer Cham
Association for Women in Mathematics Series ISBN: 9783319179865
idUS. Depósito de Investigación de la Universidad de Sevilla
instname
In this paper we generalize results of P. Le Duff to genus n hyperelliptic curves. More precisely, let C/Q be a hyperelliptic genus n curve and let J(C) be the associated Jacobian variety. Assume that there exists a prime p such that J(C) has semista
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::736937451d6e5cf22812e0d14ba0f4d1
https://idus.us.es/xmlui/handle/11441/48457
https://idus.us.es/xmlui/handle/11441/48457
Autor:
Rebolledo, Marusia
Publikováno v:
Arithmetic geometry
Arithmetic geometry, American Mathematical Society, pp.71-82, 2009
Arithmetic geometry, American Mathematical Society, pp.71-82, 2009
The goal of this note is to give the key steps of the proof of Merel's theorem on the boundedness of the torsion of elliptic curves
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::5856be6f7a460b18cb71847efe25b92a
https://hal.science/hal-00483912
https://hal.science/hal-00483912