Zobrazeno 1 - 10
of 40
pro vyhledávání: '"Razvan Gabriel Iagar"'
Publikováno v:
Electronic Journal of Differential Equations, Vol 2023, Iss 72,, Pp 1-21 (2023)
Externí odkaz:
https://doaj.org/article/4ca1df1a4d01411e9eaa6fe0df4148f7
Autor:
Razvan Gabriel Iagar, Ariel Sánchez
Publikováno v:
Mathematical Methods in the Applied Sciences.
Autor:
Razvan Gabriel Iagar, Ariel Sánchez
Publikováno v:
Journal of Dynamics and Differential Equations. 34:1139-1172
We classify the self-similar blow-up profiles for the following reaction-diffusion equation with critical strong weighted reaction and unbounded weight: $$ \partial_tu=\partial_{xx}(u^m) + |x|^{\sigma}u^p, $$ posed for $x\in\real$, $t\geq0$, where $m
Autor:
Ariel Sánchez, Razvan Gabriel Iagar
Publikováno v:
Journal of Differential Equations. 272:560-605
We perform a thorough study of the blow up profiles associated to the following second order reaction-diffusion equation with non-homogeneous reaction: ∂ t u = ∂ x x ( u m ) + | x | σ u p , in the range of exponents 1 p m and σ > 0 . We classif
Publikováno v:
Bulletin des Sciences Mathématiques
Bulletin des Sciences Mathématiques, 2022, 179, pp.103167
Bulletin des Sciences Mathématiques, 2022, 179, pp.103167
International audience; The non-existence of nonnegative compactly supported classical solutions to $−\Delta V (x) − |x|^\sigma V (x) + V^{1/m}(x)/(m − 1) = 0$, $x\in R^N$, with $m > 1$, $\sigma > 0$, and $N \ge 1$, is proven for $\sigma$ suffi
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::7a62be16b0c1c78e3ac6024fc9850001
http://arxiv.org/abs/2202.13738
http://arxiv.org/abs/2202.13738
Autor:
Razvan Gabriel Iagar, Ariel Sánchez
Some transformations acting on radially symmetric solutions to the following class of non-homogeneous reaction-diffusion equations | x | σ 1 ∂ t u = ∆ u m + | x | σ 2 u p , ( x , t ) ∈ R N × ( 0 , ∞ ) , which has been proposed in a number
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::f410eb9d76bc65619c1afada230a02e8
We study the dynamics of the following porous medium equation with strong absorption $$\partial_t u=\Delta u^m-|x|^{\sigma}u^q,$$ posed for $(t, x) \in (0,\infty) \times \mathbb{R}^N$, with $m > 1$, $q \in (0, 1)$ and $\sigma > 2(1-q)/(m-1)$. Conside
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::3289b99fd6cadb1159122c11e46dd865
We prove existence and uniqueness of a global in time self-similar solution growing up as $t\to\infty$ for the following reaction-diffusion equation with a singular potential $$ u_t=\Delta u^m+|x|^{\sigma}u^p, $$ posed in dimension $N\geq2$, with $m>
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::af85042fd524624b877574168c141c97
http://arxiv.org/abs/2111.04806
http://arxiv.org/abs/2111.04806
We prove existence and uniqueness of the branch of the so-called anomalous eternal solutions in exponential self-similar form for the subcritical fast-diffusion equation with a weighted reaction term ∂ t u = Δ u m + | x | σ u p , posed in R N wit
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::623afc6d465ca0daf6208201579e8a86
http://arxiv.org/abs/2104.07556
http://arxiv.org/abs/2104.07556