Zobrazeno 1 - 10
of 51
pro vyhledávání: '"Razumov, Alexander A."'
Autor:
Razumov, Alexander V.
The work is devoted to the study of quantum integrable systems associated with quantum loop algebras. The recently obtained equation for the zero temperature inhomogeneous reduced density operator is analyzed. It is demonstrated that any solution of
Externí odkaz:
http://arxiv.org/abs/2004.02624
Publikováno v:
SIGMA 15 (2019), 068, 67 pages
We systematise and develop a graphical approach to the investigations of quantum integrable vertex statistical models and the corresponding quantum spin chains. The graphical forms of the unitarity and various crossing relations are introduced. Their
Externí odkaz:
http://arxiv.org/abs/1811.09401
Publikováno v:
SIGMA 13 (2017), 043, 31 pages
We discuss highest $\ell$-weight representations of quantum loop algebras and the corresponding functional relations between integrability objects. In particular, we compare the prefundamental and $q$-oscillator representations of the positive Borel
Externí odkaz:
http://arxiv.org/abs/1702.08710
Publikováno v:
J. Phys. A: Math. Theor. 43 (2010) 415208
Using the formula for the universal $R$-matrix proposed by Khoroshkin and Tolstoy, we give a detailed derivation of $L$-operators for the quantum groups associated with the generalized Cartan matrices $A_1^{(1)}$ and $A_2^{(1)}$.
Comment: 36 pag
Comment: 36 pag
Externí odkaz:
http://arxiv.org/abs/1004.5342
Publikováno v:
J.Geom.Phys. 48 (2003) 505-545
We construct the classical W-algebras for some non-abelian Toda systems associated with the Lie groups GL(2n,R) and Sp(n,R). We start with the set of characteristic integrals and find the Poisson brackets for the corresponding Hamiltonian counterpart
Externí odkaz:
http://arxiv.org/abs/hep-th/0210267
The symmetries of the simplest non-abelian Toda equations are discussed. The set of characteristic integrals whose Hamiltonian counterparts form a W-algebra, is presented.
Comment: 11 pages, LaTeX, no figures; Based on talk given at the 12th Int
Comment: 11 pages, LaTeX, no figures; Based on talk given at the 12th Int
Externí odkaz:
http://arxiv.org/abs/hep-th/0210136
The relationship between the Dirac and reduced phase space quantizations is investigated for spin models belonging to the class of Hamiltonian systems having no gauge conditions. It is traced out that the two quantization methods may give similar, or
Externí odkaz:
http://arxiv.org/abs/hep-th/9412137
Publikováno v:
Int.J.Mod.Phys. A11 (1996) 1427-1462
The constrained Hamiltonian systems admitting no gauge conditions are considered. The methods to deal with such systems are discussed and developed. As a concrete application, the relationship between the Dirac and reduced phase space quantizations i
Externí odkaz:
http://arxiv.org/abs/hep-th/9306017
Publikováno v:
Phys.Lett. B301 (1993) 41-48
There is a constrained-WZNW--Toda theory for any simple Lie algebra equipped with an integral gradation. It is explained how the different approaches to these dynamical systems are related by gauge transformations. Combining Gauss decompositions in r
Externí odkaz:
http://arxiv.org/abs/hep-th/9211088
Autor:
Monkhoev, Roman, Astapov, Ivan Ivanovich, Bezyazeekov, Pavel Alexandrovich, Bonvech, Elena Alekseevna, Borodin, Arthur Nikolaevich, Budnev, Nikolay Mikhailovich, Bulan, Alexander Vladimirovich, Vaidyanathan, Arun, Volkov, Nikolay Viktorovich, Volchugov, Pavel Andreevich, Voronin, Dmitry Mikhailovich, Gafarov, Alexander Ravilievich, Gres, Elizaveta Olegovna, Gress, Oleg Anatolyevich, Gress, Tatyana Ivanovna, Grishin, Oleg Gennadievich, Garmash, Alexey Yuryevich, Grebenyuk, Victor Matveevich, Grinyuk, Andrey Anatolyevich, Dyachok, Alexey Nikolaevich, Zhurov, Dmitry Pavlovich, Zagorodnikov, Alexey Viktorovich, Ivanova, Aleksandra Denisovna, Ivanova, Anna Leonidovna, Iliushin, Mikhail Aleksandrovich, Kalmykov, Nikolay Nikolaevich, Kindin, Victor Vladimirovich, Kiryukhin, Sergey Nikolaevich, Kokoulin, Rostislav Pavlovich, Kolosov, Nikita Ivanovich, Konstantin, Georgievich Company, Korosteleva, Elena Evgenievna, Kozhin, Vladimir Alexandrovich, Kravchenko, Evgeny Anatolyevich, Kryukov, Alexander Pavlovich, Kuzmichev, Leonid Aleksandrovich, Chiavassa, Andrea, Lagutin, Anatoly Alekseevich, Lavrova, Maria Victorovna, Lemeshev, Yuri Evgenievich, Lubsandorzhiev, Bayarto Konstantinovich, Lubsandorzhiev, Nima Bulatovich, Malakhov, Stanislav Dmitrievich, Mirgazov Rashid Ramzelievich, Rashid Ramzelievich, Okuneva, Evelina Aleksandrovna, Osipova, Eleanor Armaisovna, Pakhorukov, Alexander Leonidovich, Pan, Anatoly, Panov, Alexander Dmitrievich, Pankov, Leonid Vasilievich, Petrukhin, Anatoly Afanasevich, Podgrudkov, Dmitry Arkadievich, Popova, Elena Grigoryevna, Postnikov, Evgeny Borisovich, Prosin, Vasily Vladimirovich, Ptuskin, Vladimir Solomonoviche, Pushnin, Anatoly Andreyevich, Razumov, Alexander Yurievich, Raikin, Roman Ilyich, Rubtsov, Grigory Igorevich, Ryabov, Evgeny Valerievich, Samoliga, Vladimir Sergeevich, Satyshev, Ilyas, Silaev, Alexander Alekseevich, Silaev, Alexey Alexandrovich, Sidorenkov, Andrey Yurievich, Skurikhin, Alexander Vasilievich, Sokolov, Andrey Valerievich, Sveshnikova, Lyubov Georgievna, Tabolenko, Victor Alexandrovich, Tanaev, Andrey Borisovich, Tarashchansky, Boris Abramovich, Ternovoy, Mark Yuryevich, Tkachev, Leonid Grigorievich, Ushakov, Nikita Andreevich, Chernov, Dmitry Valentinovich, Yashin, Igor Ivanovich
The Tunka-Grande array is a part of unified experimental complex, which also includes Tunka-133 and TAIGA-HiSCORE (High Sensitivity COsmic Rays and gamma Explorer) wide-angle Cherenkov arrays, TAIGA-IACT array (Imaging Atmospheric Cherenkov Telescope
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::6354e6e05130b42f1c14e018a461ad8a