Zobrazeno 1 - 10
of 35 868
pro vyhledávání: '"Razavi A"'
Autor:
Chen, Kai-Feng, Wilensky, Michael J., Liu, Adrian, Dillon, Joshua S., Hewitt, Jacqueline N., Adams, Tyrone, Aguirre, James E., Baartman, Rushelle, Beardsley, Adam P., Berkhout, Lindsay M., Bernardi, Gianni, Billings, Tashalee S., Bowman, Judd D., Bull, Philip, Burba, Jacob, Byrne, Ruby, Carey, Steven, Choudhuri, Samir, Cox, Tyler, DeBoer, David R., Dexter, Matt, Eksteen, Nico, Ely, John, Ewall-Wice, Aaron, Furlanetto, Steven R., Gale-Sides, Kingsley, Garsden, Hugh, Gehlot, Bharat Kumar, Gorce, Adélie, Gorthi, Deepthi, Halday, Ziyaad, Hazelton, Bryna J., Hickish, Jack, Jacobs, Daniel C., Josaitis, Alec, Kern, Nicholas S., Kerrigan, Joshua, Kittiwisit, Piyanat, Kolopanis, Matthew, La Plante, Paul, Lanman, Adam, Ma, Yin-Zhe, MacMahon, David H. E., Malan, Lourence, Malgas, Cresshim, Malgas, Keith, Marero, Bradley, Martinot, Zachary E., McBride, Lisa, Mesinger, Andrei, Mohamed-Hinds, Nicel, Molewa, Mathakane, Morales, Miguel F., Murray, Steven G., Nuwegeld, Hans, Parsons, Aaron R., Pascua, Robert, Qin, Yuxiang, Rath, Eleanor, Razavi-Ghods, Nima, Robnett, James, Santos, Mario G., Sims, Peter, Singh, Saurabh, Storer, Dara, Swarts, Hilton, Tan, Jianrong, van Wyngaarden, Pieter, Zheng, Haoxuan
The precise characterization and mitigation of systematic effects is one of the biggest roadblocks impeding the detection of the fluctuations of cosmological 21cm signals. Missing data in radio cosmological experiments, often due to radio frequency i
Externí odkaz:
http://arxiv.org/abs/2411.10529
Reinforcement learning (RL) is a sub-domain of machine learning, mainly concerned with solving sequential decision-making problems by a learning agent that interacts with the decision environment to improve its behavior through the reward it receives
Externí odkaz:
http://arxiv.org/abs/2411.10268
Autor:
Wickremasinghe, Dewmini Hasara, Xu, Yiyang, Puyol-Antón, Esther, Aljabar, Paul, Razavi, Reza, King, Andrew P.
Quantification of cardiac biomarkers from cine cardiovascular magnetic resonance (CMR) data using deep learning (DL) methods offers many advantages, such as increased accuracy and faster analysis. However, only a few studies have focused on the scan-
Externí odkaz:
http://arxiv.org/abs/2408.11754
Autor:
Jafarinia, Hossein, Alipanah, Alireza, Hamdi, Danial, Razavi, Saeed, Mirzaie, Nahal, Rohban, Mohammad Hossein
Whole Slide Image (WSI) classification with multiple instance learning (MIL) in digital pathology faces significant computational challenges. Current methods mostly rely on extensive self-supervised learning (SSL) for satisfactory performance, requir
Externí odkaz:
http://arxiv.org/abs/2408.08258
Autor:
Imagen-Team-Google, Baldridge, Jason, Bauer, Jakob, Bhutani, Mukul, Brichtova, Nicole, Bunner, Andrew, Chan, Kelvin, Chen, Yichang, Dieleman, Sander, Du, Yuqing, Eaton-Rosen, Zach, Fei, Hongliang, de Freitas, Nando, Gao, Yilin, Gladchenko, Evgeny, Colmenarejo, Sergio Gómez, Guo, Mandy, Haig, Alex, Hawkins, Will, Hu, Hexiang, Huang, Huilian, Igwe, Tobenna Peter, Kaplanis, Christos, Khodadadeh, Siavash, Kim, Yelin, Konyushkova, Ksenia, Langner, Karol, Lau, Eric, Luo, Shixin, Mokrá, Soňa, Nandwani, Henna, Onoe, Yasumasa, Oord, Aäron van den, Parekh, Zarana, Pont-Tuset, Jordi, Qi, Hang, Qian, Rui, Ramachandran, Deepak, Rane, Poorva, Rashwan, Abdullah, Razavi, Ali, Riachi, Robert, Srinivasan, Hansa, Srinivasan, Srivatsan, Strudel, Robin, Uria, Benigno, Wang, Oliver, Wang, Su, Waters, Austin, Wolff, Chris, Wright, Auriel, Xiao, Zhisheng, Xiong, Hao, Xu, Keyang, van Zee, Marc, Zhang, Junlin, Zhang, Katie, Zhou, Wenlei, Zolna, Konrad, Aboubakar, Ola, Akbulut, Canfer, Akerlund, Oscar, Albuquerque, Isabela, Anderson, Nina, Andreetto, Marco, Aroyo, Lora, Bariach, Ben, Barker, David, Ben, Sherry, Berman, Dana, Biles, Courtney, Blok, Irina, Botadra, Pankil, Brennan, Jenny, Brown, Karla, Buckley, John, Bunel, Rudy, Bursztein, Elie, Butterfield, Christina, Caine, Ben, Carpenter, Viral, Casagrande, Norman, Chang, Ming-Wei, Chang, Solomon, Chaudhuri, Shamik, Chen, Tony, Choi, John, Churbanau, Dmitry, Clement, Nathan, Cohen, Matan, Cole, Forrester, Dektiarev, Mikhail, Du, Vincent, Dutta, Praneet, Eccles, Tom, Elue, Ndidi, Feden, Ashley, Fruchter, Shlomi, Garcia, Frankie, Garg, Roopal, Ge, Weina, Ghazy, Ahmed, Gipson, Bryant, Goodman, Andrew, Górny, Dawid, Gowal, Sven, Gupta, Khyatti, Halpern, Yoni, Han, Yena, Hao, Susan, Hayes, Jamie, Hertz, Amir, Hirst, Ed, Hou, Tingbo, Howard, Heidi, Ibrahim, Mohamed, Ike-Njoku, Dirichi, Iljazi, Joana, Ionescu, Vlad, Isaac, William, Jana, Reena, Jennings, Gemma, Jenson, Donovon, Jia, Xuhui, Jones, Kerry, Ju, Xiaoen, Kajic, Ivana, Ayan, Burcu Karagol, Kelly, Jacob, Kothawade, Suraj, Kouridi, Christina, Ktena, Ira, Kumakaw, Jolanda, Kurniawan, Dana, Lagun, Dmitry, Lavitas, Lily, Lee, Jason, Li, Tao, Liang, Marco, Li-Calis, Maggie, Liu, Yuchi, Alberca, Javier Lopez, Lu, Peggy, Lum, Kristian, Ma, Yukun, Malik, Chase, Mellor, John, Mosseri, Inbar, Murray, Tom, Nematzadeh, Aida, Nicholas, Paul, Oliveira, João Gabriel, Ortiz-Jimenez, Guillermo, Paganini, Michela, Paine, Tom Le, Paiss, Roni, Parrish, Alicia, Peckham, Anne, Peswani, Vikas, Petrovski, Igor, Pfaff, Tobias, Pirozhenko, Alex, Poplin, Ryan, Prabhu, Utsav, Qi, Yuan, Rahtz, Matthew, Rashtchian, Cyrus, Rastogi, Charvi, Raul, Amit, Rebuffi, Sylvestre-Alvise, Ricco, Susanna, Riedel, Felix, Robinson, Dirk, Rohatgi, Pankaj, Rosgen, Bill, Rumbley, Sarah, Ryu, Moonkyung, Salgado, Anthony, Singla, Sahil, Schroff, Florian, Schumann, Candice, Shah, Tanmay, Shillingford, Brendan, Shivakumar, Kaushik, Shtatnov, Dennis, Singer, Zach, Sluzhaev, Evgeny, Sokolov, Valerii, Sottiaux, Thibault, Stimberg, Florian, Stone, Brad, Stutz, David, Su, Yu-Chuan, Tabellion, Eric, Tang, Shuai, Tao, David, Thomas, Kurt, Thornton, Gregory, Toor, Andeep, Udrescu, Cristian, Upadhyay, Aayush, Vasconcelos, Cristina, Vasiloff, Alex, Voynov, Andrey, Walker, Amanda, Wang, Luyu, Wang, Miaosen, Wang, Simon, Wang, Stanley, Wang, Qifei, Wang, Yuxiao, Weisz, Ágoston, Wiles, Olivia, Wu, Chenxia, Xu, Xingyu Federico, Xue, Andrew, Yang, Jianbo, Yu, Luo, Yurtoglu, Mete, Zand, Ali, Zhang, Han, Zhang, Jiageng, Zhao, Catherine, Zhaxybay, Adilet, Zhou, Miao, Zhu, Shengqi, Zhu, Zhenkai, Bloxwich, Dawn, Bordbar, Mahyar, Cobo, Luis C., Collins, Eli, Dai, Shengyang, Doshi, Tulsee, Dragan, Anca, Eck, Douglas, Hassabis, Demis, Hsiao, Sissie, Hume, Tom, Kavukcuoglu, Koray, King, Helen, Krawczyk, Jack, Li, Yeqing, Meier-Hellstern, Kathy, Orban, Andras, Pinsky, Yury, Subramanya, Amar, Vinyals, Oriol, Yu, Ting, Zwols, Yori
We introduce Imagen 3, a latent diffusion model that generates high quality images from text prompts. We describe our quality and responsibility evaluations. Imagen 3 is preferred over other state-of-the-art (SOTA) models at the time of evaluation. I
Externí odkaz:
http://arxiv.org/abs/2408.07009
Autor:
Charles, N., Kern, N. S., Pascua, R., Bernardi, G., Bester, L., Smirnov, O., Acedo, E. d. L., Abdurashidova, Z., Adams, T., Aguirre, J. E., Baartman, R., Beardsley, A. P., Berkhout, L. M., Billings, T. S., Bowman, J. D., Bull, P., Burba, J., Byrne, R., Carey, S., Chen, K., Choudhuri, S., Cox, T., DeBoer, D. R., Dexter, M., Dillon, J. S., Dynes, S., Eksteen, N., Ely, J., Ewall-Wice, A., Fritz, R., Furlanetto, S. R., Gale-Sides, K., Garsden, H., Gehlot, B. K., Ghosh, A., Gorce, A., Gorthi, D., Halday, Z., Hazelton, B. J., Hewitt, J. N., Hickish, J., Huang, T., Jacobs, D. C., Josaitis, A., Kerrigan, J., Kittiwisit, P., Kolopanis, M., Lanman, A., Liu, A., Ma, Y. -Z., MacMahon, D. H. E., Malan, L., Malgas, K., Malgas, C., Marero, B., Martinot, Z. E., McBride, L., Mesinger, A., Mohamed-Hinds, N., Molewa, M., Morales, M. F., Murray, S., Nikolic, B., Nuwegeld, H., Parsons, A. R., Patra, N., Plante, P. L., Qin, Y., Rath, E., Razavi-Ghods, N., Riley, D., Robnett, J., Rosie, K., Santos, M. G., Sims, P., Singh, S., Storer, D., Swarts, H., Tan, J., Wilensky, M. J., Williams, P. K. G., Wyngaarden, P. v., Zheng, H.
The 21 cm transition from neutral Hydrogen promises to be the best observational probe of the Epoch of Reionisation (EoR). This has led to the construction of low-frequency radio interferometric arrays, such as the Hydrogen Epoch of Reionization Arra
Externí odkaz:
http://arxiv.org/abs/2407.20923
Inference serving is of great importance in deploying machine learning models in real-world applications, ensuring efficient processing and quick responses to inference requests. However, managing resources in these systems poses significant challeng
Externí odkaz:
http://arxiv.org/abs/2407.14843
Quantum Data Centers (QDCs) could overcome the scalability challenges of modern quantum computers. Single-processor monolithic quantum computers are affected by increased cross talk and difficulty of implementing gates when the number of qubits is in
Externí odkaz:
http://arxiv.org/abs/2407.10769
Autor:
Razavi, Kamran, Fard, Shayan Davari, Karlos, George, Nigade, Vinod, Mühlhäuser, Max, Wang, Lin
The rise of deep learning has led to various successful attempts to apply deep neural networks (DNNs) for important networking tasks such as intrusion detection. Yet, running DNNs in the network control plane, as typically done in existing proposals,
Externí odkaz:
http://arxiv.org/abs/2406.19990
Existing benchmarks do not test language agents on their interaction with human users or ability to follow domain-specific rules, both of which are vital for deploying them in real world applications. We propose $\tau$-bench, a benchmark emulating dy
Externí odkaz:
http://arxiv.org/abs/2406.12045