Zobrazeno 1 - 4
of 4
pro vyhledávání: '"Rawan S. Olayan"'
Autor:
Maha A. Thafar, Rawan S. Olayan, Somayah Albaradei, Vladimir B. Bajic, Takashi Gojobori, Magbubah Essack, Xin Gao
Publikováno v:
Journal of Cheminformatics, Vol 13, Iss 1, Pp 1-18 (2021)
Abstract Drug–target interaction (DTI) prediction is a crucial step in drug discovery and repositioning as it reduces experimental validation costs if done right. Thus, developing in-silico methods to predict potential DTI has become a competitive
Externí odkaz:
https://doaj.org/article/df451b2b7c4e484fab56585276a745fd
Autor:
Maha A. Thafar, Rawan S. Olayan, Haitham Ashoor, Somayah Albaradei, Vladimir B. Bajic, Xin Gao, Takashi Gojobori, Magbubah Essack
Publikováno v:
Journal of Cheminformatics, Vol 12, Iss 1, Pp 1-17 (2020)
Abstract In silico prediction of drug–target interactions is a critical phase in the sustainable drug development process, especially when the research focus is to capitalize on the repositioning of existing drugs. However, developing such computat
Externí odkaz:
https://doaj.org/article/9b0584ac1995479186dd701e130dba65
Autor:
Magbubah Essack, Haitham Ashoor, Maha A. Thafar, Somayah Albaradei, Vladimir B. Bajic, Xin Gao, Takashi Gojobori, Rawan S. Olayan
Publikováno v:
Journal of Cheminformatics
Journal of Cheminformatics, Vol 12, Iss 1, Pp 1-17 (2020)
Journal of Cheminformatics, Vol 12, Iss 1, Pp 1-17 (2020)
In silico prediction of drug–target interactions is a critical phase in the sustainable drug development process, especially when the research focus is to capitalize on the repositioning of existing drugs. However, developing such computational met
Publikováno v:
Bioinformatics
Motivation Finding computationally drug–target interactions (DTIs) is a convenient strategy to identify new DTIs at low cost with reasonable accuracy. However, the current DTI prediction methods suffer the high false positive prediction rate. Resul