Zobrazeno 1 - 10
of 37
pro vyhledávání: '"Ravishankar, Krishnamurthi"'
In this paper we study the convergence of dynamical discrete web (DyDW) to the dynamical Brownian web (DyBW) in the path space topology. We show that almost surely the DyBW has RCLL paths taking values in an appropriate metric space and as a sequence
Externí odkaz:
http://arxiv.org/abs/2207.03458
Publikováno v:
In Stochastic Processes and their Applications September 2024 175
We introduce a new metric for collections of aged paths and a robust set of criteria for compactness for a set of collection of aged paths in the topology corresponding to this metric. We show that the distribution of stable webs ($1< \alpha \leq 2$)
Externí odkaz:
http://arxiv.org/abs/2106.02944
Motivated by tumor growth models we establish conditions for the $R-$positivity of Markov processes and positive matrices. We then apply them to obtain the asymptotic behavior of the tumors sizes in the supercritical regime.
Externí odkaz:
http://arxiv.org/abs/1906.08446
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
ALEA, Lat. Am. J. Probab. Math. Stat. 16,787-807,2019
We provide a process on the space of coalescing cadlag stable paths and show convergence in the appropriate topology for coalescing stable random walks on the integer lattice.
Externí odkaz:
http://arxiv.org/abs/1803.06739
The study of rumor models from a percolation theory point of view has gained a few adepts in the last few years. The persistence of a rumor, which may consistently spread out throughout a population can be associated to the existence of a giant compo
Externí odkaz:
http://arxiv.org/abs/1612.03853
We study a rumour model from a percolation theory and branching process point of view. The existence of a giant component is related to the event where the rumour, which started from the root of a tree, spreads out through an infinite number of its v
Externí odkaz:
http://arxiv.org/abs/1510.02821
We introduce a new self-interacting random walk on the integers in a dynamic random environment and show that it converges to a pure diffusion in the scaling limit. We also find a lower bound on the diffusion coefficient in some special cases. With m
Externí odkaz:
http://arxiv.org/abs/math/0611734
We describe the hydrodynamic behavior of the $k$-step exclusion process. Since the flux appearing in the hydrodynamic equation for this particle system is neither convex nor concave, the set of possible solutions include in addition to entropic shock
Externí odkaz:
http://arxiv.org/abs/math/9911213