Zobrazeno 1 - 10
of 12
pro vyhledávání: '"Ravi Kumar Vuddagiri"'
Autor:
Bahae Abidi, Sakeena Akhtar, K.N.R.K. Raju Alluri, Nuno Almeida, G.M. Bhat, Amira Boulmaiz, Nathaniel Christen, Noureddine Doghmane, Todor D. Ganchev, Krishna Gurugubelli, Saliha Harize, Mohamed El Haziti, Abdelillah Jilbab, Maksym Ketsmur, Arshid Iqbal Khan, Nasreddine Kouadria, Djemil Messadeg, Amy Neustein, Shabir A. Parah, Debadatta Pati, Javaid A. Sheikh, Samuel Silva, Madhusudan Singh, António Teixeira, Ramakrishna Thirumuru, Ravi Kumar Vuddagiri, Anil Kumar Vuppala
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::a049e87a219206ac01cfb97360154a5b
https://doi.org/10.1016/b978-0-12-816801-1.09989-8
https://doi.org/10.1016/b978-0-12-816801-1.09989-8
Curriculum learning based approach for noise robust language identification using DNN with attention
Publikováno v:
Expert Systems with Applications. 110:290-297
Automatic language identification (LID) in practical environments is gaining a lot of scientific attention due to rapid developments in multilingual speech processing applications. When an LID is operated in noisy environments a degradation in the pe
Publikováno v:
ASRU
In this paper, phonetic features derived from the joint acoustic model (JAM) of a multilingual end to end automatic speech recognition system are proposed for Indian language identification (LID). These features utilize contextual information learned
Publikováno v:
International Journal of Speech Technology. 21:501-508
In this paper, a combination of excitation source information and vocal tract system information is explored for the task of language identification (LID). The excitation source information is represented by features extracted from linear prediction
Publikováno v:
IC3
Self-attention networks are being popularly employed in sequence classification and sequence summarization tasks. State-of-the-art models use sequential models to capture the high-level information, but these models are sensitive to length of utteran
Publikováno v:
SLTU
Autor:
Anil Kumar Vuppala, Ravi Kumar Vuddagiri, Jiteesh Varma Bhupathiraju, Suryakanth V. Gangashetty, Hari Krishna Vydana
Publikováno v:
Mining Intelligence and Knowledge Exploration ISBN: 9783319268316
MIKE
MIKE
Automatically identifying the language being spoken from speech plays a vital role in operating multilingual speech processing applications. A rapid growth in the use of mobile communication devices has inflicted the necessity of operating all speech
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::544381f1fed28aa49920d6ce6e53f288
https://doi.org/10.1007/978-3-319-26832-3_30
https://doi.org/10.1007/978-3-319-26832-3_30
Autor:
Kamsali Veera, Mounika, Vuddagiri, Ravi Kumar, Gangashetty, Suryakanth V., Vuppala, Anil Kumar
Publikováno v:
International Journal of Speech Technology; Sep2018, Vol. 21 Issue 3, p501-508, 8p
Publikováno v:
Mining Intelligence & Knowledge Exploration: Third International Conference, MIKE 2015, Hyderabad, India, December 9-11, 2015, Proceedings; 2015, pI-XVIII, 18p