Zobrazeno 1 - 10
of 277
pro vyhledávání: '"Rassias, Michael Th"'
Autor:
Rassias, Michael Th.
We investigate the behaviour of a certain additive function depending on prime divisors of specific integers lying in large gaps between consecutive primes. The result is obtained by a combination of results and ideas related to large gaps between pr
Externí odkaz:
http://arxiv.org/abs/2409.00394
Autor:
Rassias, Michael Th.
One of the themes of this paper is recent results on large gaps between primes. The first of these results has been achieved in the paper [12] by Ford, Green, Konyagin and Tao. It was later improved in the joint paper [13] of these four authors with
Externí odkaz:
http://arxiv.org/abs/2402.07176
Autor:
Maier, Helmut, Rassias, Michael Th.
In previous papers the authors established the prime avoidance property of $k$-th powers of prime numbers and of prime numbers within Beatty sequences. In this paper the authors consider $k$-th powers of Piatetski-Shapiro primes.
Externí odkaz:
http://arxiv.org/abs/2306.16777
Autor:
Rassias, Michael Th.1,2,3 michail.rassias@math.uzh.ch, Bicheng Yang4 bcyang818@163.com
Publikováno v:
Applicable Analysis & Discrete Mathematics. Oct2024, Vol. 18 Issue 2, p289-304. 16p.
Autor:
Maier, Helmut, Rassias, Michael Th.
Let $$\gamma^*:=\frac{8}{9}+\frac{2}{3}\:\frac{\log(10/9)}{\log 10}\:(\approx 0.919\ldots)\:,\ \gamma^*<\frac{1}{c_0}\leq 1\:.$$ Let $\gamma^*<\gamma_0\leq 1$, $c_0=1/\gamma_0$ be fixed. Let also $a_0\in\{0,1,\ldots, 9\}$. In [23] we proved on assump
Externí odkaz:
http://arxiv.org/abs/2108.13132
Autor:
Maier, Helmut, Rassias, Michael Th.
Cotangent sums play a significant role in the Nyman-Beurling criterion for the Riemann Hypothesis. Here we investigate the maximum of the values of these cotangent sums over various sets of rational numbers in short intervals.
Externí odkaz:
http://arxiv.org/abs/2101.01089
Autor:
Maier, Helmut, Rassias, Michael Th.
Let $$\gamma^*=\frac{8}{9}+\frac{2}{3}\:\frac{\log(10/9)}{\log 10}\:(\approx 0.919\ldots)\:.$$ Let $\gamma^*<\gamma_0\leq 1$, $c_0=1/\gamma_0$ be fixed. Let also $a_0\in\{0,1,\ldots, 9\}$.\\ We prove on assumption of the Generalized Riemann Hypothesi
Externí odkaz:
http://arxiv.org/abs/2006.07873
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.